Abstract:
The present invention relates to the field of bioengineering. It provides a Candida antarctica lipase B mutant and its application. The mutant enzyme overcomes the limit of the parent enzyme that can exhibit high enantioselectivity towards (R)-3-TBDMSO glutaric acid methyl monoester only at temperatures below 5° C. The mutant enzyme successfully increased R-ee value at 5-70° C. The mutant D223V/A281S exhibits high R-ee value (>99%), high conversion rate (80%), and high space-time yield (107.54 g L−1 d−1). The present invention lays a foundation for industrial production of (R)-3-TBDMSO glutaric acid methyl monoester using a biosynthesis approach and provide insights into conformational dynamics-based enzyme design.
Abstract:
Provided herein are nanocrystal assemblies comprising quantum dots, a dopant (e.g., an organic compound dopant), and a ligand bridging the quantum dots. Also provided are methods of preparing the assemblies and devices comprising the assemblies (e.g., field effect transistors, thermoelectric generators).
Abstract:
This disclosure provides, inter alia, proteins that bind to FcRn, e.g., immunoglobulins that inhibit FcRn with high affinity and selectivity. The FcRn-binding proteins can be used to treat a variety of disorders including autoimmune disorders.
Abstract:
This disclosure provides, inter alia, proteins that bind to FcRn, e.g., immunoglobulins that inhibit FcRn with high affinity and selectivity. The FcRn-binding proteins can be used to treat a variety of disorders including autoimmune disorders.
Abstract:
This disclosure provides, inter alia, proteins that bind to FcRn, e.g., immunoglobulins that inhibit FcRn with high affinity and selectivity. The FcRn-binding proteins can be used to treat a variety of disorders including autoimmune disorders.
Abstract:
The present invention relates to the field of biotechnology engineering. It provides a recombinant Escherichia coli that can produce fructosylated chondroitin with high yields and the method for constructing the recombinant strain. The present invention discloses a method for constructing an expression plasmid pETM6R1-RBS-glmM-GGGS-glmS that contains a glmM and a glmS gene under regulation of ribosome binding sites. The recombinant plasmid was transformed into E. coli K4 to obtain a recombinant E. coli strain ZQ33 that can produce fructosylated chondroitin up to 3.99 g·L−1 by fed-batch fermentation in a 5-L fermentor, which was increased by 108.90% compared to that of the wild type strain.
Abstract:
The present invention is directed to methods and compositions for the production of Fc-containing polypeptides having improved properties and comprising mutations at positions 243 and 264 of the Fc region.
Abstract:
A low-power laser and arc hybrid welding method includes the steps of matching laser pulses with arc phases, and inducing compress arcs by the laser pulses. A laser peak pulse is triggered from half of the positive half-wave to half of the negative half-wave of alternating arc current. The sum of laser peak pulse width and laser basic pulse width is equal to the time width from a laser pulse triggered point to a negative half-wave end point of the alternating arc current. A welding device for carrying out the method is disclosed. An angle formed by the axis of a laser beam (1) and the vertical direction is in the range of −50°-50°. An angle formed by the axis of the laser beam (1) and the axis of an arc torch (2) is in the range of 20°-120°. Arc power density is adjusted minutely in the range of 103-105 by adjusting the alternating arc current, protrusion quantity of an electrode (3) and gas flow velocity of a nozzle. The method and the device can reduce the consumption and save the cost.
Abstract:
The present invention is directed to methods and compositions for the production of Fc-containing polypeptides having improved properties and comprising mutations at positions 243 and 264 of the Fc region.
Abstract:
The present invention relates to a process for manufacturing a ramie fabric and the fabric. The process comprising the following steps: blend spinning a high-count ramie fiber such as a ramie fiber of 2500Nm or higher with a water-soluble fiber as carrier to form a yarn; sizing the yarn at a low temperature; weaving the yarn to form a gray fabric; then removing the water-soluble fiber from the gray fabric by deweighting the gray fabric during a printing and dyeing finishing process to obtain a super-high-count ramie fabric with a ramie yarn fineness of 160Nm or higher.