Abstract:
An apparatus includes a positioning system and a patient reference sensor (PRS). The positioning system acquires a plurality of raw PRS readings over time, which can indicate the position and orientation of the PRS. A filter is configured to process the raw PRS readings and output filtered PRS readings. The filter outputs filtered PRS readings as a baseline value while the raw PRS readings stay within a predetermined range and output filtered PRS readings as unchanged raw PRS readings when the raw PRS readings reach or vary outside of the predetermined range. A motion compensation function generated based on at least the filtered PRS readings can be used to correct a subject position and orientation (P&O) to compensate for the motion of the moving region of interest over time.
Abstract:
A system for navigating a medical device is provided. In one embodiment, a magnetic field generator assembly generates a magnetic field. Position sensors on the medical device, on an imaging system and on the body generate signals indicative of the positions within the magnetic field. The generator assembly and reference sensors are arranged such that a correlation exists between them and the positions of the body and of a radiation emitter and a radiation detector of the imaging system. An electronic control unit (ECU) determines, responsive to signals generated by the sensors, a position of the medical device, a position of one of the radiation emitter and detector and a distance between the emitter and detector. Using this information, the ECU can, for example, register images from the imaging system in a coordinate system and superimpose an image of the device on the image from the imaging system.
Abstract:
An apparatus for displaying a moving region of interest located within a body includes a positioning system to determine a position and orientation (P&O) of a medical device as well as to track, using an internal position reference sensor, the motion of the region of interest over time. A compensation function block generates a motion compensation function based on the motion of the region of interest, which is configured to compensate for the motion of the region of interest between a first time, for example a time at which an image was acquired and a second time, for example a time at which a P&O of the device was measured. The measured P&O is corrected using the compensation function. A representation of the medical device is superimposed on the image in accordance with the corrected P&O.
Abstract:
A system for navigating a medical device is provided. In one embodiment, a magnetic field generator assembly generates a magnetic field. Position sensors on the medical device, on an imaging system and on the body generate signals indicative of the positions within the magnetic field. The generator assembly and reference sensors are arranged such that a correlation exists between them and the positions of the body and of a radiation emitter and a radiation detector of the imaging system. An electronic control unit (ECU) determines, responsive to signals generated by the sensors, a position of the medical device, a position of one of the radiation emitter and detector and a distance between the emitter and detector. Using this information, the ECU can, for example, register images from the imaging system in a coordinate system and superimpose an image of the device on the image from the imaging system.
Abstract:
A system for navigating a medical device is provided. In one embodiment, a magnetic field generator assembly generates a magnetic field. Position sensors on the medical device, on an imaging system and on the body generate signals indicative of the positions within the magnetic field. The generator assembly and reference sensors are arranged such that a correlation exists between them and the positions of the body and of a radiation emitter and a radiation detector of the imaging system. An electronic control unit (ECU) determines, responsive to signals generated by the sensors, a position of the medical device, a position of one of the radiation emitter and detector and a distance between the emitter and detector. Using this information, the ECU can, for example, register images from the imaging system in a coordinate system and superimpose an image of the device on the image from the imaging system.
Abstract:
A system for navigating a medical device is provided. In one embodiment, a magnetic field generator assembly generates a magnetic field. Position sensors on the medical device, on an imaging system and on the body generate signals indicative of the positions within the magnetic field. The generator assembly and reference sensors are arranged such that a correlation exists between them and the positions of the body and of a radiation emitter and a radiation detector of the imaging system. An electronic control unit (ECU) determines, responsive to signals generated by the sensors, a position of the medical device, a position of one of the radiation emitter and detector and a distance between the emitter and detector. Using this information, the ECU can, for example, register images from the imaging system in a coordinate system and superimpose an image of the device on the image from the imaging system.
Abstract:
A method for emulating prerecorded images may comprise acquiring at least one organ timing signal reading representing an activity state of an organ with at least one organ timing signal detector, acquiring a plurality of images with a medical imaging system, associating each of the plurality of images with an organ timing signal reading, removing any of the organ timing signal readings and associated images that are not representative of a normal organ configuration, and outputting a sequence of the representative images for a display.
Abstract:
A system for navigating a medical device is provided. In one embodiment, a magnetic field generator assembly generates a magnetic field. Position sensors on the medical device, on an imaging system and on the body generate signals indicative of the positions within the magnetic field. The generator assembly and reference sensors are arranged such that a correlation exists between them and the positions of the body and of a radiation emitter and a radiation detector of the imaging system. An electronic control unit (ECU) determines, responsive to signals generated by the sensors, a position of the medical device, a position of one of the radiation emitter and detector and a distance between the emitter and detector. Using this information, the ECU can, for example, register images from the imaging system in a coordinate system and superimpose an image of the device on the image from the imaging system.
Abstract:
A roll-detecting sensor assembly includes a coil extending along and disposed about an axis. The coil comprises one or more portions, with each portion defining a winding angle. At least one of the portions defines a winding angle that is substantially nonzero relative to a line perpendicular to the axis, whereby the projected area of the coil in an applied magnetic field changes as the coil rotates about the axis. As a result, the coil is configured to produce a signal responsive to the magnetic field indicative of the roll of the sensor about the axis. In an embodiment, at least one of the portions defines a winding angle that is at least 2 degrees. In an embodiment, at least one of the portions defines a winding angle that is about 45 degrees.
Abstract:
The present disclosure relates generally to medical systems and methods for combining and synergizing information in an expedient format for viewing on a display screen. In one embodiment, a method for combining and synergizing data from different medical systems comprises obtaining from a first medical system an image disposed relative to a first coordinate system, obtaining from a second medical system supplemental data; synchronizing first and second clocks of the first and second medical systems, respectively, and displaying in synchronicity the supplemental data combined with the image. In other embodiments, coordinate systems of the first and second medical systems can be co-registered. In another embodiment, sensor integration time and spatial accuracy of the first and second medical systems can be used with an algorithm to produce synergized information.