Abstract:
A method of detecting stall of a multi-phase motor operated in a micro-stepped mode, the method comprising: a) applying at least two phase-shifted micro-stepped waveforms to the phase windings of the motor; b) determining a sum of currents flowing through the phase windings, and taking samples of the sum of currents synchronously with the application of the micro-stepped waveforms; c) calculating a moving average or moving sum of the samples over one or more “full steps” of the phase-shifted waveforms; d) calculating an adaptive threshold based on the samples; e) detecting stall of the motor when the moving average is larger than the adaptive threshold. An electrical circuit and a computer program are arranged to perform the method.
Abstract:
A method for detecting rotor position for a single coil DC motor or 2-coil DC motor with non-parallel windings, with no need of Hall position sensor. The method comprises applying a first respectively second probe pulse for generating a first response pulse having a first direction or polarity and a second response pulse having a second direction or polarity. The probe pulses are adapted so they do not substantially move the rotor with respect to the stator, but affect the magnetic properties of the stator. By comparing the measured effects caused by the probe pulses, the initial position of the rotor with respect to the stator is determined. A method for start-up, a motor driver circuit, and a motor assembly comprising said motor and driver circuit are also provided.
Abstract:
A system comprising a motor controller for providing a plurality of first power signals and a single common second power signal to a motor module comprising a plurality of potentiometers connectable to a plurality of DC-motors. The power signals and feedback signals are sent over a wire interface having less than three wires per motor. A position feedback signal is read when a motor is being powered. The power signals may be DC-signals, pulsed or tri-state signals. The circuit may have a voltage divider consisting of two or three resistors. The actual motor position can be derived from the position feedback signals using one of two formulas or curves. A motor controller, and a method for driving a plurality of DC-motors is also disclosed.
Abstract:
A lead angle estimator is provided for estimating a lead angle of a brushless DC motor. The lead angle is the angle between a phase-voltage-vector of a phase-voltage, and a phase-current-vector of a phase-current. The lead angle estimator comprises a sampling unit and a processing unit. The sampling unit is adapted for obtaining phase-samples, which are a measure of the phase-current. The processing unit is adapted for estimating the lead angle by calculating a difference of the phase-samples in a extremum period around a maximum or around at least the phase-voltage, and by normalizing the obtained difference.
Abstract:
A method for detecting stall of a multiphase motor operated in a sinusoidal micro-stepped mode. The method comprises: a) measuring at least one phase current and/or measuring the sum of all phase currents at regular time intervals synchronous with the micro-steps, b) calculating the difference between the measured phase current at a first moment and the measured phase current of the same phase at a previous moment and/or the difference between the measured sum of all phase currents at a first moment and the measured sum of all phase currents at a previous synchronous moment, c) analyzing the series of obtained current differences so as to generate a stall detection signal.