Abstract:
A manifold has a frame and a plurality of valves supported by the frame, each valve having a cross gear. The manifold also has a screw drive and a splined rotatable shaft parallel to the screw drive. The manifold further includes a slider driven by the screw drive over the splined rotatable shaft. The slider includes an actuator that protrudes from the slider to engage one of the cross gears to actuate a respective one of the plurality of valves.
Abstract:
A manifold has a frame and a plurality of valves supported by the frame, each valve having a cross gear. The manifold also has a screw drive and a splined rotatable shaft parallel to the screw drive. The manifold further includes a slider driven by the screw drive over the splined rotatable shaft. The slider includes an actuator that protrudes from the slider to engage one of the cross gears to actuate a respective one of the plurality of valves.
Abstract:
A supply manifold for a hydronic heating or cooling system has a housing a plurality of valves disposed on respective outlets of the housing in a linear arrangement. Each outlet is adapted to connect to a conduit for delivering the liquid to a zone. Each valve controls a flow of the heating or cooling liquid into each respective conduit. The supply manifold has a single actuator for individually actuating one of the valves. A first displacement mechanism, e.g. a screw drive power by an electric motor, displaces the actuator along a longitudinal axis parallel to the linear arrangement of the valves to thereby access any one of the valves. A second displacement mechanism, e.g. a solenoid, displaces the actuator orthogonally to the longitudinal axis to thereby cause engagement or disengagement of the actuator with a selected one of the valves for opening or closing.
Abstract:
A supply manifold for a hydronic heating or cooling system has a housing a plurality of valves disposed on respective outlets of the housing in a linear arrangement. Each outlet is adapted to connect to a conduit for delivering the liquid to a zone. Each valve controls a flow of the heating or cooling liquid into each respective conduit. The supply manifold has a single actuator for individually actuating one of the valves. A first displacement mechanism, e.g. a screw drive power by an electric motor, displaces the actuator along a longitudinal axis parallel to the linear arrangement of the valves to thereby access any one of the valves. A second displacement mechanism, e.g. a solenoid, displaces the actuator orthogonally to the longitudinal axis to thereby cause engagement or disengagement of the actuator with a selected one of the valves for opening or closing.
Abstract:
A manifold has a frame and a plurality of valves supported by the frame, each valve having a cross gear. The manifold also has a screw drive and a splined rotatable shaft parallel to the screw drive. The manifold further includes a slider driven by the screw drive over the splined rotatable shaft. The slider includes an actuator that protrudes from the slider to engage one of the cross gears to actuate a respective one of the plurality of valves.
Abstract:
A manifold has a frame and a plurality of valves supported by the frame, each valve having a cross gear. The manifold also has a screw drive and a splined rotatable shaft parallel to the screw drive. The manifold further includes a slider driven by the screw drive over the splined rotatable shaft. The slider includes an actuator that protrudes from the slider to engage one of the cross gears to actuate a respective one of the plurality of valves.
Abstract:
A heat-transferring fin is attached to an electric cable or to a packaged double cable of an electric radiant heating system. The fins can be attached using twist clips. Each twist clip includes an upper gripping member, a lower gripping member connected to the upper member by an upright support member, and a handle portion looping downwardly from the lower gripping member to enable a user to hold the clip and to manually twist the clip to cause the upper and lower gripping members to rotate relative to the fin and cable such that the fin and cable are clipped together. This twist clip enables quick and easy attachment of fins to cables, which greatly reduces the time and effort required to install an electric radiant heating system. This technology can be used in electric radiant floor heating or electric radiant wall heating.
Abstract:
A kit for constructing a de-aerator that includes a concentrator is adapted to be connected to a standard pipe coupling. The concentrator is inserted in the path of liquid conveyed through the pipe coupling for aggregating gas, and directing the gas to a cavity. The cavity is encased by the fitting which is a vertical, cylindrical sheath with one end adapted to be inserted into standard pipe couplings, and the other end adapted to be connected with the cap. The cap includes a vent adapted to open and shut in response to lowering and raising of the level of the liquid in the cavity below/above a threshold, respectively.
Abstract:
A twist clip for attaching a heat-radiating fin to a conduit of a hydronic heating system includes an upper gripping member, a lower gripping member connected to the upper member by an upright support member, and a handle portion looping downwardly from the lower gripping member to enable a user to hold the clip and to manually twist the clip to cause the upper and lower gripping members to rotate relative to the fin and conduit such that the fin and conduit are clipped together. This twist clip enables quick and easy attachment of fins to conduits, which greatly reduces the time and effort required to install a hydronic heating system.
Abstract:
A kit for constructing a de-aerator for a fluid distribution system includes a gas concentrator adapted to be received in chamber of a T-coupling provided with the kit. A cap is provided that closes a cap connector integrally formed with the T-coupling. The cap supports a valve that opens and closes in response to fluctuations of a level of the fluid in the cavity as air is accumulated in the cavity and discharged by an opening of the valve.