Abstract:
A multiple force-measuring device, especially a multiple weighing device has at least two force-measuring modules. Each force-measuring module includes a force-measuring cell and a power delivery means. The power delivery means of at least one of the force-measuring modules in this arrangement is connected, directly or through a junction element, to a control cable that is connected to a power supply unit. The force-measuring modules are connected directly to each other through a module-connection cable that transfers electrical power therebetween.
Abstract:
A multiple force-measuring device, especially a multiple weighing device has at least two force-measuring modules. Each force-measuring module includes a force-measuring cell and a power delivery means. The power delivery means of at least one of the force-measuring modules in this arrangement is connected, directly or through a junction element, to a control cable that is connected to a power supply unit. The force-measuring modules are connected directly to each other through a module-connection cable that transfers electrical power therebetween.
Abstract:
A method and associated apparatus transmits measurement values in a multi-module force-measuring device, in particular a multi-module weighing device, with at least two force-measuring modules. Each of the force-measuring modules includes a force-measuring cell and a signal-processing unit. The signal-processing unit transmits the measurement values generated by the force-measuring cell by way of a signal line to a signal-evaluating unit. Under the method, each measurement value is converted into a bit sequence by the respective signal-processing unit. The first force-measuring module's bit sequence is transmitted to the signal-evaluating unit, and the bit sequences of the signal-processing unit of the further force-measuring modules are transmitted by way of the signal-processing unit of the first force-measuring module to the signal-evaluating unit.
Abstract:
The invention concerns a calibration device (40) for a force-measuring device (1), specifically a balance, with an electrically controllable force-generating means (41) designed to be coupled to a force-measuring cell (10) of a force-measuring device (1) in such a way that a predefined force (FC) can be applied to the force-measuring cell (10), so that the latter generates a measuring signal (SF) which correlates to the applied force (FC) and which can be transmitted to a processing unit (60, PU), where it can be processed in reference to the predefined force (FC). The calibration device (40) includes a calibration control unit (CCU) which has access to at least one predefined parameter (P) characterizing the force-measuring device ((1) and/or the calibration device (40), wherein the calibration control unit (CCU) can be connected by way of a communications link (52) to the processing unit (60, PU) in order to exchange information signals (SCD) with the latter, and wherein the calibration control unit (CCU) is configured to generate control signals based on the information signals (SCD) and the parameter (P) in order to thereby control the force-generating means (41).
Abstract:
A method for adjusting a calibration arrangement of an electronic balance during the production process, wherein the calibration arrangement includes a transfer mechanism with a drive system, and wherein the calibration arrangement couples at least one calibration weight to the force-measuring device, said coupling being effected by the transfer mechanism transferring the calibration weight in a guided movement between a rest position and a calibration position. According to the method the distance between the end stops is determined by a counter system and stored into memory. Using the stored travel distance to calculate the rest position and the calibration position.
Abstract:
The invention concerns a calibration device (40) for a force-measuring device (1), specifically a balance, with an electrically controllable force-generating means (41) designed to be coupled to a force-measuring cell (10) of a force-measuring device (1) in such a way that a predefined force (FC) can be applied to the force-measuring cell (10), so that the latter generates a measuring signal (SF) which correlates to the applied force (FC) and which can be transmitted to a processing unit (60, PU), where it can be processed in reference to the predefined force (FC). The calibration device (40) includes a calibration control unit (CCU) which has access to at least one predefined parameter (P) characterizing the force-measuring device ((1) and/or the calibration device (40), wherein the calibration control unit (CCU) can be connected by way of a communications link (52) to the processing unit (60, PU) in order to exchange information signals (SCD) with the latter, and wherein the calibration control unit (CCU) is configured to generate control signals based on the information signals (SCD) and the parameter (P) in order to thereby control the force-generating means (41).
Abstract:
A method and associated apparatus transmits measurement values in a multi-module force-measuring device, in particular a multi-module weighing device, with at least two force-measuring modules. Each of the force-measuring modules includes a force-measuring cell and a signal-processing unit. The signal-processing unit transmits the measurement values generated by the force-measuring cell by way of a signal line to a signal-evaluating unit. Under the method, each measurement value is converted into a bit sequence by the respective signal-processing unit. The first force-measuring module's bit sequence is transmitted to the signal-evaluating unit, and the bit sequences of the signal-processing unit of the further force-measuring modules are transmitted by way of the signal-processing unit of the first force-measuring module to the signal-evaluating unit.
Abstract:
A method for adjusting a calibration arrangement of an electronic balance during the production process, wherein the calibration arrangement includes a transfer mechanism with a drive system, and wherein the calibration arrangement couples at least one calibration weight to the force-measuring device, said coupling being effected by the transfer mechanism transferring the calibration weight in a guided movement between a rest position and a calibration position. According to the method the distance between the end stops is determined by a counter system and stored into memory. Using the stored travel distance to calculate the rest position and the calibration position.