Abstract:
An MRI system includes an ultrasonic detector system that includes an ultrasonic transducer placed to detect movement of selected anatomic structure in a patient. The transducer signal is analyzed to produce a gating signal which is used by the MRI system to trigger data acquisition.
Abstract:
Current bolus chase magnetic resonance angiography is limited by the imaging time for each station. Tailoring the density of k-space sampling along the anterior-posterior direction of the coronal station allows a substantial decrease in scan time that leads to greater contrast bolus sharing among stations and consequently a significant improvement in image quality. Fast arterial-venous transit in the carotid arteries requires accurate, reliable timing of the acquisition to the bolus transit to maximize arterial signal and minimize venous artifacts. The rising edge of the bolus is not utilized in conventional elliptical-centric view ordering because the critical k-space center must be acquired with full arterial enhancement. The invention provides a recessed elliptical-centric view ordering scheme is introduced in which the k-space center is acquired a few seconds following scan initiation. The recessed view ordering is shown to be more robust to timing errors in a patient studies.
Abstract:
The present invention is a technique of, and system for, imaging vascular anatomy over distance considerably greater than the maximum practical field of view of a magnetic resonance imaging system while using substantially one contrast agent injection. The technique and system of the present invention acquires image data of a plurality of image volumes which are representative of different portions of the patient's body. The image data of each image volume includes image data which is representative of the center of k-space. The acquisition of image data which is representative of the center of k-space is correlated with a concentration of contrast agent in the artery(ies) residing in the image volume being substantially greater than the concentration of contrast agent in veins and background tissue adjacent to the artery(ies). This provides preferential enhancement of arteries relative to adjacent veins and background tissue for each acquisition, wherein each acquisition is representative of a different portion of the arterial system (e.g., abdominal aorta, femoral, popliteal, and tibial arteries).
Abstract:
A method of ablating atherosclerotic plaque by means of short-duration laser light pulses. A carotenoid, such as beta-carotene, is preferably administered to the patient by injection or ingestion prior to exposing the plaque with laser light. Research data obtained by analysis of the absorption characteristics of plaque and the healthy arterial tissue reveals that the plaque may be selectively ablated without damaging the surrounding normal tissue by illuminating the plaque with laser light having a wavelength of about 430 to about 510 nanometers such that the relative absorption coefficient exhibited by the plaque is more than 1.5 times the absorption coefficient of the arterial tissue. Short duration laser light pulses preferably illuminate the plaque for less than the thermal relaxation time of the volume of exposed material. The intensity of the laser light is preferably in the range from about 1 to about 9 joules/cm.sup.2 in order to ablate the plaque without endangering the surrounding tissue. The carotenoid administered to the patient enhances the absorption coefficient of the plaque to facilitate ablation and additionally facilitates the detection of the plaque.
Abstract translation:一种通过短时间激光脉冲消融动脉粥样硬化斑块的方法。 在用激光暴露斑块之前,优选通过注射或摄取向患者施用类胡萝卜素,例如β-胡萝卜素。 通过分析斑块和健康动脉组织的吸收特征获得的研究数据显示,通过用波长为约430至约510纳米的激光照射斑块,可以选择性地烧蚀斑块而不损伤周围正常组织,使得 斑块表现的相对吸收系数是动脉组织吸收系数的1.5倍以上。 短持续时间的激光脉冲优选照射斑块以小于暴露材料的体积的热松弛时间。 激光的强度优选在约1至约9焦耳/ cm 2的范围内,以便消融斑块而不危及周围组织。 施用于患者的类胡萝卜素增强斑块的吸收系数以促进消融,并且另外促进斑块的检测。
Abstract:
The present invention is a technique and apparatus for acquiring anatomic information used in diagnosing and characterizing abdominal aortic aneurismal disease and the like. This technique provides anatomic information, in the form of images, using a combination of a plurality of magnetic resonance angiography sequences, including a spin-echo and four contrast enhanced (e.g., gadolinium) magnetic resonance angiography sequences. The anatomic images may be used in, for example, pre-operative, operative and post-operative evaluation of aortic pathology, including aneurysms, atherosclerosis, and occlusive disease of branch vessels such as the renal arteries. The gadolinium-enhanced magnetic resonance angiography provides sufficient anatomic detail to detect aneurysms and all relevant major branch vessel abnormalities seen at angiography operation. This technique and apparatus allows for imaging the aorta at a fraction of the cost of conventional aortography and without the risks of arterial catheterization or iodinated contrast.
Abstract:
There are many inventions described herein as well as many aspects and embodiments of those inventions. A thigh compression device and technique to control, time, delay and/or prevent excessive early venous enhancement relative to arterial enhancement and thereby improve and/or enhance MRA images, including peripheral MRA images. In one embodiment, the present invention uses a curved strip of material which is longer on the superior edge and shorter along the inferior edge. When wrapped around the conical or conal-like shape of the thigh of a subject (for example, a human), the thigh compression device more uniformly conforms to and/or fits around the thigh, providing more even/uniform compression as well as reducing, minimizing and/or eliminating significant movement of the thigh compression device towards the knees of the subject. Notably, a snug fit on the thighs may also enable the thigh compression device to be inflated with less fluid (for example, air) which is faster and less cumbersome for the operator.
Abstract:
A safety gas and liquid containment unit is provided with sealing for retaining the hazardous gas therein until treated. The containment unit can be placed on a transport carrier and rotated from a vertical position to a horizontal position thereon. The gas cylinder may be brought to the containment unit by placing it on a wheeled cart. By aligning the cart with the horizontally positioned containment unit, the container is then transferred from the cart to the containment unit, which can in turn be transported to an appropriate area for treatment. Upon removal of the toxic or other gases, the container can be withdrawn from the containment unit by a winch mechanism.
Abstract:
A safety gas and liquid containment unit is provided with sealing for retaining the hazardous gas therein until treated. The containment unit can be placed on a transport carrier and rotated from a vertical position to a horizontal position thereon. The gas cylinder may be brought to the containment unit by placing it on a wheeled cart. By aligning the cart with the horizontally positioned containment unit, the container is then transferred from the cart to the containment unit, which can in turn be transported to an appropriate area for treatment. Upon removal of the toxic or other gases, the container can be withdrawn from the containment unit by a winch mechanism.