Abstract:
Systems and methods for simulating user interaction with virtual objects in an augmented reality environment are provided. Three-dimensional point cloud information from a three-dimensional volumetric imaging sensor may be obtained. An object position of a virtual object may be determined. Individual potential force vectors for potential forces exerted on the virtual object may be determined. An individual potential force vector may be defined by one or more of a magnitude, a direction, and/or other information. An aggregate scalar magnitude of the individual potential force vectors may be determined. An aggregate potential force vector may be determined by aggregating the magnitudes and directions of the individual potential force vectors. It may be determined whether the potential forces exerted on the virtual object are conflicting.
Abstract:
Systems and methods to provide an interactive environment over an expanded field-of-view are presented herein. The system may include one or more of a headset, a first image forming component held by the headset, a second image forming component held by the headset, one or more physical processors, and/or other components. The first image forming component may be configured to generate light rays to form a first set of images of virtual content at a first resolution. The first set of images of virtual content may be presented to the user over a first angular portion of the user's field-of-view. The second image forming component may be configured to generate light rays to form a second set of images of virtual content at a second resolution. The second set of images of virtual content may be presented to the user over a second angular portion of the user's field-of-view.
Abstract:
Systems and methods for simulating user interaction with virtual objects in an augmented reality environment are provided. Three-dimensional point cloud information from a three-dimensional volumetric imaging sensor may be obtained. An object position of a virtual object may be determined. Individual potential force vectors for potential forces exerted on the virtual object may be determined. An individual potential force vector may be defined by one or more of a magnitude, a direction, and/or other information. An aggregate scalar magnitude of the individual potential force vectors may be determined. An aggregate potential force vector may be determined by aggregating the magnitudes and directions of the individual potential force vectors. It may be determined whether the potential forces exerted on the virtual object are conflicting.
Abstract:
Aspects of the disclosed apparatuses, methods and systems provide three dimensional gradient and dynamic light fields for display in 3D technologies, in particular 3D augmented reality (AR) devices, by coupling visual accommodation and visual convergence to the same plane at any depth of an object of interest in real time.
Abstract:
Aspects of the disclosed apparatuses, methods and systems provide three dimensional gradient and dynamic light fields for display in 3D technologies, in particular 3D augmented reality (AR) devices, by coupling visual accommodation and visual convergence to the same plane at any depth of an object of interest in real time.
Abstract:
Aspects of the disclosed apparatuses, methods and systems provide elimination of distortion induced by an optical system that reflects light from an image source. An inverse mapping of the distortion is created for the optical system. The display system applies the inverse mapping to an image prior to display to introduce a distortion to the displayed image that is the inverse of the distortion introduced by the optical system. As a result, the distortion in the displayed image is canceled by the distortion of the optical element providing the user with an image that is substantially distortion free.
Abstract:
Aspects of the disclosed apparatuses, methods and systems provide three dimensional gradient and dynamic light fields for display in 3D technologies, in particular 3D augmented reality (AR) devices, by coupling visual accommodation and visual convergence to the same plane at any depth of an object of interest in real time.
Abstract:
Methods, systems, components, and techniques provide a retinal light scanning engine to write light corresponding to an image on the retina of a viewer. As described herein, a light source of the retinal light scanning engine forms a single point of light on the retina at any single, discrete moment in time. In one example, to form a complete image, the retinal light scanning engine uses a pattern to scan or write on the retina to provide light to millions of such points over one time segment corresponding to the image. The retinal light scanning engine changes the intensity and color of the points drawn by the pattern by simultaneously controlling the power of different light sources and movement of an optical scanner to display the desired content on the retina according to the pattern. In addition, the pattern may be optimized for writing an image on the retina. Moreover, multiple patterns may be used to additional increase or improve the field-of-view of the display. In one embodiment, these methods, systems, components, and technics are incorporated in an augmented reality or virtual reality display system.
Abstract:
Systems and methods for simulating user interaction with virtual objects in an augmented reality environment are provided. Three-dimensional point cloud information from a three-dimensional volumetric imaging sensor may be obtained. An object position of a virtual object may be determined. Individual potential force vectors for potential forces exerted on the virtual object may be determined. An individual potential force vector may be defined by one or more of a magnitude, a direction, and/or other information. An aggregate scalar magnitude of the individual potential force vectors may be determined. An aggregate potential force vector may be determined by aggregating the magnitudes and directions of the individual potential force vectors. It may be determined whether the potential forces exerted on the virtual object are conflicting.