Abstract:
Integrating optical systems and methods of use are described herein. In one embodiment, an integrating optical system comprises: a housing having a first and second portions; and a chamber having a diffuse reflective material and a volume formed within the portions when coupled together. The portions are separable to allow insertion and removal of at least one light treatable object in and out of the chamber. At least one aperture is formed in the chamber to couple to a light source and to direct light from the light source to at least a first portion of the diffuse reflective material. At least one holding structure supports the object within the volume at a location, wherein the diffuse reflective material, the aperture and the location ensure that the light is diffusely reflected to integrate the light and impact the object with substantially uniform light without movement of the object.
Abstract:
An integrating optical system having a chamber, the chamber having an aperture and at least one portion having a diffuse reflective material; a light source; and a diffuse transmissive baffle. The baffle is located in relation to the chamber such that it is also located in an optical path between the light source and a treatable target. A light-ray originating from the light source is diffusely transmitted from the diffuse transmissive baffle and impinges on an interior surface of the chamber before impinging on the treatable target.
Abstract:
An integrating optical system having a chamber, the chamber having an aperture and at least one portion having a diffuse reflective material; a light source; and a diffuse transmissive baffle. The baffle is located in relation to the chamber such that it is also located in an optical path between the light source and a treatable target. A light-ray originating from the light source is diffusely transmitted from the diffuse transmissive baffle and impinges on an interior surface of the chamber before impinging on the treatable target.
Abstract:
An apparatus for remediating a contaminated fluent material, such as a gas, utilizes a pulsed corona discharge. The apparatus includes a reactor section and a power supply section. The reactor section has a plurality of first electrodes electrically interconnected to a header plate and a plurality of second electrodes concentrically disposed about each first electrode and electrically interconnected to a reactor plate. The electrical contact between the header plate and the power supply is by a compression spring. When fluent material is flowing within channels defined by the second electrodes and a high voltage pulse is applied to the header plate, a stream of high energy electrons flows between the first electrodes and the second electrodes forming corona discharges effective to destroy polluting compounds contained in the contaminated fluent material.
Abstract:
An ultraviolet flux multiplying air sterilization chamber comprises inner surfaces having a diffuse reflective behavior. The sterilization chamber includes an inlet aperture and an outlet aperture for air to flow through said chamber and a light source emitting an ultraviolet light. Due to the reflectivity of the inner surfaces of the chamber, a flux of the ultraviolet light is multiplied by reflecting multiple times from the inner surfaces of the chamber. The inlet and outlet apertures are advantageously configured to reduce the amount of light that escapes from the chamber and increase the amount of photons available in the chamber. In an exemplary embodiment, perforated end panels having diffuse, reflective interior surfaces may be provided over at least a portion of the inlet and outlet apertures.
Abstract:
An ultraviolet flux multiplying air sterilization chamber comprises inner surfaces having a diffuse reflective behavior. The sterilization chamber includes an inlet aperture and an outlet aperture for air to flow through said chamber and a light source emitting an ultraviolet light. Due to the reflectivity of the inner surfaces of the chamber, a flux of the ultraviolet light is multiplied by reflecting multiple times from the inner surfaces of the chamber. The inlet and outlet apertures are advantageously configured to reduce the amount of light that escapes from the chamber and increase the amount of photons available in the chamber. In an exemplary embodiment, perforated end panels having diffuse, reflective interior surfaces may be provided over at least a portion of the inlet and outlet apertures.
Abstract:
Integrating optical systems and methods of use are described herein. In one embodiment, an integrating optical system comprises: a housing having a first and second portions; and a chamber having a diffuse reflective material and a volume formed within the portions when coupled together. The portions are separable to allow insertion and removal of at least one light treatable object in and out of the chamber. At least one aperture is formed in the chamber to couple to a light source and to direct light from the light source to at least a first portion of the diffuse reflective material. At least one holding structure supports the object within the volume at a location, wherein the diffuse reflective material, the aperture and the location ensure that the light is diffusely reflected to integrate the light and impact the object with substantially uniform light without movement of the object.
Abstract:
An ultraviolet flux multiplying air sterilization chamber comprises inner surfaces having a diffuse reflective behavior. The sterilization chamber includes an inlet aperture and an outlet aperture for air to flow through said chamber and a light source emitting an ultraviolet light. Due to the reflectivity of the inner surfaces of the chamber, a flux of the ultraviolet light is multiplied by reflecting multiple times from the inner surfaces of the chamber. The inlet and outlet apertures are advantageously configured to reduce the amount of light that escapes from the chamber and increase the amount of photons available in the chamber. In an exemplary embodiment, perforated end panels having diffuse, reflective interior surfaces may be provided over at least a portion of the inlet and outlet apertures.
Abstract:
An ultraviolet flux multiplying air sterilization chamber comprises inner surfaces having a diffuse reflective behavior. The sterilization chamber includes an inlet aperture and an outlet aperture for air to flow through said chamber and a light source emitting an ultraviolet light. Due to the reflectivity of the inner surfaces of the chamber, a flux of the ultraviolet light is multiplied by reflecting multiple times from the inner surfaces of the chamber. The inlet and outlet apertures are advantageously configured to reduce the amount of light that escapes from the chamber and increase the amount of photons available in the chamber. In an exemplary embodiment, perforated end panels having diffuse, reflective interior surfaces may be provided over at least a portion of the inlet and outlet apertures.