Abstract:
A three shaft adjustment mechanism including a drive part which can be connected to a drive shaft in a rotationally fixed manner, a driven part which can be connected to a driven shaft, and an actuator which can be connected to an adjustment shaft as a mechanism part. A mechanical stop for defining an adjustment angle between the drive shaft and driven shaft is provided between two of the three shafts. According to the invention, the mechanism part not involved in the stop has a mass distribution or form which is such that a quotient from its mass moment of inertia J and its partial radius r is smaller than 0.4 kg×mm. The invention also relates to a method for producing a shaft generator having this type of mechanism.
Abstract:
A lubricant circuit of a camshaft adjuster is provided. In conventional camshaft adjusters, lubricant is supplied from a cylinder head to the camshaft adjuster via a supply channel (66) and a receiving channel (69), with an annular groove that encircles in a circumferential direction being located between the supply channel and the receiving channel in order to ensure a continuous lubricant supply. According to the invention, the lubricant is transferred from the supply channel to the receiving channel in a discontinuous manner. The omission of the encircling annular groove causes a discontinuous or cyclic flow of lubricant so that lubricant is transferred only when the supply channel (66) is at least partially aligned with the receiving channel (69).
Abstract:
A device (1) which is used to modify the control times of an internal combustion engine (100) is provided. The device (1) includes a drive wheel (13), a drive element (4) and a swashplate mechanism (4). The torque of the crankshaft (101) is transferred via a primary drive to the drive wheel (13) and then, via the swashplate mechanism (2) to the drive element (4) which is secured to the camshaft (11) in a rotationally fixed manner. The configuration of the mounting of the drive wheel (13) on the tooth support (9) of the drive element (4) reduces the axial area of the device (1) due to the construction measures. The invention also relates to an embodiment, wherein the device (1) is fixed to the camshaft (11) by means of a securing screw (12a) without the need for additional space.
Abstract:
A lubricant circuit of a camshaft adjuster is provided. In conventional camshaft adjusters, lubricant is supplied from a cylinder head to the camshaft adjuster via a supply channel (66) and a receiving channel (69), with an annular groove that encircles in a circumferential direction being located between the supply channel and the receiving channel in order to ensure a continuous lubricant supply. According to the invention, the lubricant is transferred from the supply channel to the receiving channel in a discontinuous manner. The omission of the encircling annular groove causes a discontinuous or cyclic flow of lubricant so that lubricant is transferred only when the supply channel (66) is at least partially aligned with the receiving channel (69).
Abstract:
Adjustment device (1) for adjusting a relative rotational angle position of a camshaft (3) relative to a crankshaft of an internal combustion engine is provided. The adjusting device includes a crankshaft-fixed drive part (4) and a camshaft-fixed driven part (5). The adjustment device (1) has an adjustment motor (2) as a primary adjustment device and an auxiliary drive (11) as a secondary adjustment device. When the adjusting motor fails, the camshaft (3) can be moved into a fixed rotational angle position, an emergency running position, by the auxiliary drive (11).
Abstract:
Vane-cell camshaft adjuster with a stator and a rotor which is hydraulically rotatable relative to the stator. The rotor is connectable to a camshaft. It is provided with radially projecting vanes which are inserted in vane slots in the rotor. The axial end section of the vane slot on the camshaft side has an enlarged cross section.
Abstract:
A vane-type camshaft adjuster having a stator, and a rotor connectable to a camshaft. The rotor has a plurality of radially protruding blades inserted in respective blade grooves. The blade groove has groove side faces, a groove bottom and rounded transition regions between the groove side faces and the groove bottom. The transition regions undercut the groove side faces, wherein the rounded transition regions are configured, at least in part, as circular arc segments which undercut the groove bottom.
Abstract:
The invention concerns a control device for adjusting the relative angular position of a driven shaft, particularly a camshaft of an internal combustion engine, said device comprising a drive pinion that is rotatably connected to the shaft, an adjusting element (1) for the angular adjustment of the drive pinion relative to the shaft, two chambers (2, 3) that are alternately supplied with hydraulic fluid and a control valve (6) for actuating the adjusting element (1), said control valve being connected to the chambers (2, 3) of the adjusting element (1) through pressure medium channels (4, 5). The control valve (6) comprises a valve body (7) that has two working connections A and B for the pressure medium channels (4, 5), a delivery connection P for the supply of hydraulic fluid and a discharge connection T for the discharge of hydraulic fluid, and the control valve (6) further comprises a sliding valve control piston (8) for setting different hydraulic resistances W between the individual connections. In an intermediate adjusted position of the valve control piston (8), for setting an intermediate phase angle, a lower hydraulic resistance W prevails between the delivery connection P and that one of the working connections A and B at which a design-related, higher fluid leakage V occurs.
Abstract:
A method for adjusting a crankshaft of an internal combustion engine which has a camshaft adjuster that in turn has a triple-shaft gear mechanism with a setting shaft, a camshaft sprocket and a camshaft. The camshaft sprocket is drivably connected to the crankshaft. During motor standstill or in a transition phase, in which at least one of the three shafts of the triple-shaft gear mechanism stands still, a driving of the setting shaft occurs. Also, a camshaft adjustment system is disclosed which has a triple-shaft gear mechanism with a control device that adjusts the crankshaft during the motor standstill or in a transition phase.
Abstract:
A camshaft adjuster (1) having a variable ratio gear unit (2). Usually, a drive movement of an electrical actuating assembly (7) is transmitted into a variable ratio gear unit (2) of a camshaft adjuster (1) on the side which faces away from the camshaft (6). According to the invention, the abovementioned drive movement is transmitted in from the side of the variable ratio gear unit (2) which faces the camshaft (6). As a result, a further assembly, for example a vacuum pump, can be driven by the variable ratio gear unit (2) on the side of the variable ratio gear unit (2) which has become free and faces away from the camshaft (6). An actuating shaft (4) of the actuating assembly (7) is preferably mounted via a bearing (34) which is supported on a circumferential face of the camshaft (6). This results in a reduced axial overall size of the camshaft adjuster and extended possibilities for the arrangement of an actuating assembly and the connection of additional assemblies.