Abstract:
A compensated pressure or force sensor, especially for temperature, includes a substrate and on one side of the substrate, a first assembly of multilayer nanoparticles between the first pair of electrodes. On the same side of the substrate, near the first assembly, a second assembly of monolayer nanoparticles between the second pair of electrodes. The sensor additionally includes an electronic circuit configured to measure the variation of an electrical property of the first and second nanoparticle assemblies and to combine the measurements. A touch screen utilizing such sensor is provided.
Abstract:
A method for manufacturing a transparent tactile surface. The nanoparticles, particularly of ITO, are incorporated in an aqueous solution containing a stabilizing agent. The water suspension including the nanoparticles are subjected to ultrasound. The nanoparticles in aqueous suspension with a ligand are incubated that can attach to the surface of the nanoparticles through a covalent bond. The nanoparticles with the surface modified by the ligand in the form of a colloidal suspension are deposited on a transparent substrate.
Abstract:
A method for manufacturing a transparent tactile surface. The nanoparticles, particularly of ITO, are incorporated in an aqueous solution containing a stabilizing agent. The water suspension including the nanoparticles are subjected to ultrasound. The nanoparticles in aqueous suspension with a ligand are incubated that can attach to the surface of the nanoparticles through a covalent bond. The nanoparticles with the surface modified by the ligand in the form of a colloidal suspension are deposited on a transparent substrate.