Abstract:
A method for fabricating one-dimensional metallic nanostructures comprises steps: sputtering a conductive film on a flexible substrate to form a conductive substrate; placing the conductive substrate in an electrolytic solution, and undertaking electrochemical deposition to form one-dimensional metallic nanostructures corresponding to the conductive film on the conductive substrate. The method fabricates high-surface-area one-dimensional metallic nanostructures on a flexible substrate, exempted from the high price of the photolithographic method, the complicated process of the hard template method, the varied characteristic and non-uniform coating of the seed-mediated growth method.
Abstract:
A one-dimensional titanium nanostructure and a method for fabricating the same are provided. A titanium metal reacts with titanium tetrachloride to form the one-dimensional titanium nanostructure on a heat-resistant substrate in a CVD method and under a reaction condition of a reaction temperature of 300-900° C., a deposition temperature of 200-850° C., a flow rate of the carrier gas of 0.1-50 sccm and a reaction time of 5-60 hours. The titanium nanostructure includes titanium nanowires, titanium nanobelts, flower-shaped titanium nanowires, titanium nanorods, titanium nanotubes, and titanium-titanium dioxide core-shell structures. The titanium nanostructure can be densely and uniformly grown on the heat-resistant substrate. The present invention neither uses a template nor uses the complicated photolithographic process, solution preparation process, and mixing-coating process. Therefore, the process scale-up, cost down, and the simplified production process are achieved.