Abstract:
An induction heating power supply apparatus includes a smoothing section to smooth pulsating current of DC power output from a DC power supply section, and an inverter to convert the DC power smoothed by the smoothing section to AC power. The smoothing section includes a pair of bus bars connected to the inverter and a capacitor connected to the pair of bus bars. Each of the bus bars has an external surface extending in a current flow direction, the external surface including a flat face having a larger surface dimension than another face of the external surface in a direction perpendicular to the current flow direction. The bus bars are arranged in a layered manner such that the flat faces of the bus bars are opposed to each other and such that an insulator is sandwiched between the flat faces of the bus bars.
Abstract:
An induction heating system includes induction heating apparatuses, each including a high-frequency current transformer, a low-frequency current transformer and a heating coil, a high-frequency input switch connected to the high-frequency current transformer, a low-frequency input switch connected to the low-frequency current transformer, a first power source to output a high-frequency electric power and a low frequency electric power, a second power source, a first power source output switch connectable to the first power source, a second power source output switch connectable to the second power source, and a switch controller. Each induction heating apparatus includes a heater controller to send a signal to the switching controller to turn on one of the first power source output switch and the second power source output switch, to turn off the other, and to switch on or off each of the high-frequency input switch and the low-frequency input switch.
Abstract:
An induction heating system includes induction heating apparatuses, each including a high-frequency current transformer, a low-frequency current transformer and a heating coil, a high-frequency input switch connected to the high-frequency current transformer, a low-frequency input switch connected to the low-frequency current transformer, a first power source to output a high-frequency electric power and a low frequency electric power, a second power source, a first power source output switch connectable to the first power source, a second power source output switch connectable to the second power source, and a switch controller. Each induction heating apparatus includes a heater controller to send a signal to the switching controller to turn on one of the first power source output switch and the second power source output switch, to turn off the other, and to switch on or off each of the high-frequency input switch and the low-frequency input switch.
Abstract:
An induction heating system includes induction heating apparatuses, each including a high-frequency current transformer, a low-frequency current transformer and a heating coil, a high-frequency input switch connected to the high-frequency current transformer, a low-frequency input switch connected to the low-frequency current transformer, a first power source to output a high-frequency electric power and a low frequency electric power, a second power source, a first power source output switch connectable to the first power source, a second power source output switch connectable to the second power source, and a switch controller. Each induction heating apparatus includes a heater controller to send a signal to the switching controller to turn on one of the first power source output switch and the second power source output switch, to turn off the other, and to switch on or off each of the high-frequency input switch and the low-frequency input switch.
Abstract:
A power supply apparatus for induction heating is provided. The power supply apparatus includes a smoothing filter configured to smooth a pulsating current of DC power output from a DC power supply, and an inverter configured to convert the DC power that has been smoothed by the smoothing filter into AC power. The smoothing filter includes a plurality of capacitors having different internal inductances and connected to each other in parallel between input terminals of the inverter, each of the capacitors being connected to the input terminals of the inverter directly or through a pair of bus bars. The plurality of capacitors includes a first capacitor and a second capacitor, the first capacitor having smaller internal inductance than the second capacitor and a shorter conductive path between the input terminals of the inverter than the second capacitor.
Abstract:
Provided are a dual-frequency power-supply apparatus, a high-frequency heating apparatus, and a high-frequency quenching apparatus having a high durability. A dual-frequency power-supply apparatus 1 includes a power supply 10 that alternately outputs a low-frequency current and a high-frequency current. The power supply 10 has an inverter 30 that converts a direct current into the low-frequency current and the high-frequency current and a controller 40 that controls the inverter 30. The controller 40 repeats, in this order, a first output period T11 in which the low-frequency current is output, a first intermission T12 in which output is stopped, a second output period T13 in which the high-frequency current is output, and a second intermission T14 in which output is stopped. The controller 40 sets the length of the first intermission T12 longer than a time Ta until the polarity of the output voltage of the power supply 10 is reversed fourthly after transition from the first output period T11 to the first intermission T12.
Abstract:
An induction heating system includes induction heating apparatuses, each including a high-frequency current transformer, a low-frequency current transformer and a heating coil, a high-frequency input switch connected to the high-frequency current transformer, a low-frequency input switch connected to the low-frequency current transformer, a first power source to output a high-frequency electric power and a low frequency electric power, a second power source, a first power source output switch connectable to the first power source, a second power source output switch connectable to the second power source, and a switch controller. Each induction heating apparatus includes a heater controller to send a signal to the switching controller to turn on one of the first power source output switch and the second power source output switch, to turn off the other, and to switch on or off each of the high-frequency input switch and the low-frequency input switch.
Abstract:
An induction heating power supply apparatus includes a smoothing section to smooth DC power and an inverter section to convert the smoothed DC power into AC power. The inverter section has first and second modules, each having serially connected switching devices. Output bus bars are interposed between the first and second modules. The smoothing section has first bus bars connected to a DC power supply section and the first module, a capacitor connected to the first bus bars, second bus bars connected to the DC power supply section and the second module, and another capacitor connected to the second bus bars. The first and second bus bars extend parallel to the output bus bars. The first module is interposed between the first bus bars and the output bus bars. The second module is interposed between the second bus bars and the output bus bars.
Abstract:
A power conversion apparatus and a power conversion method are provided for heat treatment. The power conversion apparatus includes a rectifier configured to convert AC power to DC power, a smoothing filter configured to control the DC power received from the rectifier to be constant, an inverter configured to convert the DC power received from the smoothing filer into high-frequency power by turning the DC power on and off using a switching device made of an SiC semiconductor, and a control unit configured to control the rectifier and the inverter. A rating of output power output from the inverter is determined in accordance with a frequency of the high-frequency power output from the inverter, a current-applying time, and an operation rate obtained by dividing the current-applying time by a sum of the current-applying time and a non-current-applying time.