Abstract:
Method and system for defining basis functions for fitting distortions of profiles of objects in a batch, that has undergone a fabrication process, in a manner adaptable to the fabrication process to reduce the errors between profiles approximated with the use of such basis functions and actual object profiles. Process-specific individual basis functions are defined based on spatially-dense measurement of objects from training sub-set of the batch and applying learning algorithm to results of such measurement. Advantages of process-adaptable basis functions over generic basis functions for fitting distortion shapes of objects include higher accuracy of fitting either at larger or a fewer locations across the object.
Abstract:
A clamp for selectively inhibiting movement of a first object relative to a second object includes (i) a first clamp component coupled to the first object; (ii) a second clamp component coupled to the second object; and (iii) a fluid source that directs a fluid to the second clamp component to create a fluid bearing between the first clamp component and the second clamp component that allows for movement of the first clamp component relative to the second clamp component, and wherein the fluid source directs less fluid to the second clamp component to inhibit relative movement.
Abstract:
Method and system for defining basis functions for fitting distortions of profiles of objects in a batch, that has undergone a fabrication process, in a manner adaptable to the fabrication process to reduce the errors between profiles approximated with the use of such basis functions and actual object profiles. Process-specific individual basis functions are defined based on spatially-dense measurement of objects from training sub-set of the batch and applying learning algorithm to results of such measurement. Advantages of process-adaptable basis functions over generic basis functions for fitting distortion shapes of objects include higher accuracy of fitting either at larger or a fewer locations across the object.
Abstract:
Method and system for defining basis functions for fitting distortions of profiles of objects in a batch, that has undergone a fabrication process, in a manner adaptable to the fabrication process to reduce the errors between profiles approximated with the use of such basis functions and actual object profiles. Process-specific individual basis functions are defined based on spatially-dense measurement of objects from training sub-set of the batch and applying learning algorithm to results of such measurement. Advantages of process-adaptable basis functions over generic basis functions for fitting distortion shapes of objects include higher accuracy of fitting either at larger or a fewer locations across the object.
Abstract:
A clamp for selectively inhibiting movement of a first object relative to a second object includes (i) a first clamp component coupled to the first object; (ii) a second clamp component coupled to the second object; and (iii) a fluid source that directs a fluid to the second clamp component to create a fluid bearing between the first clamp component and the second clamp component that allows for movement of the first clamp component relative to the second clamp component, and wherein the fluid source directs less fluid to the second clamp component to inhibit relative movement.
Abstract:
Method and system for defining basis functions for fitting distortions of profiles of objects in a batch, that has undergone a fabrication process, in a manner adaptable to the fabrication process to reduce the errors between profiles approximated with the use of such basis functions and actual object profiles. Process-specific individual basis functions are defined based on spatially-dense measurement of objects from training sub-set of the batch and applying learning algorithm to results of such measurement. Advantages of process-adaptable basis functions over generic basis functions for fitting distortion shapes of objects include higher accuracy of fitting either at larger or a fewer locations across the object.