Abstract:
The present disclosure is directed to a compressed fuel storage system. The compressed fuel storage system may include an electrochemical compressor and one or more fuel dispensing units. The electrochemical compressor may be configured to compress a fuel source. Additionally, the compressed fuel storage system may include at least one low pressure compressed fuel reservoir fluidly connected to the electrochemical compressor and the fuel dispensing units and at least one high pressure compressed fuel reservoir fluidly connected to the electrochemical compressor and the fuel dispensing units.
Abstract:
A system for compressing and drying hydrogen is provided. The system may have a humidifier configured to receive and humidify a concentrated hydrogen stream and produce a first humidified hydrogen stream. The system may also have a compressor configured to receive and compress the first humidified hydrogen stream, and produce a pressurized humidified hydrogen stream. The system may further have a dryer including a first bed configured to in production mode receive the pressurized humidified hydrogen stream, absorb at least a portion of the humidity, and produce a product hydrogen stream. The first bed may further be configured to in regeneration mode receive a portion of the concentrated hydrogen stream to regenerate the first bed, and produce a second humidified hydrogen stream.
Abstract:
A system for compressing and drying hydrogen is provided. The system may have a humidifier configured to receive and humidify a concentrated hydrogen stream and produce a first humidified hydrogen stream. The system may also have a compressor configured to receive and compress the first humidified hydrogen stream, and produce a pressurized humidified hydrogen stream. The system may further have a dryer including a first bed configured to in production mode receive the pressurized humidified hydrogen stream, adsorb at least a portion of the humidity, and produce a product hydrogen stream. The first bed may further be configured to in regeneration mode receive a portion of the concentrated hydrogen stream to regenerate the first bed, and produce a second humidified hydrogen stream.
Abstract:
The present disclosure is directed to a method and system for detecting activation of a pressure relief device connected to a storage tank containing a pressurized gas. The method includes calculating a pressure relief device release rate based on a set of inputs, wherein the set of inputs includes at least one of a storage tank volume, a pressure relief set point, an orifice size of the pressure relief device, a gas density, and a reseat point for the pressure relief device. The method further includes monitoring the pressure within the storage tank and calculating a differential pressure reading over time, comparing the differential pressure reading over time to the pressure relief device release rate, and detecting a pressure relief device activation based on the comparison result.
Abstract:
The present disclosure is directed to a method and system for detecting activation of a pressure relief device connected to a storage tank containing a pressurized gas. The method includes calculating a pressure relief device release rate based on a set of inputs, wherein the set of inputs includes at least one of a storage tank volume, a pressure relief set point, an orifice size of the pressure relief device, a gas density, and a reseat point for the pressure relief device. The method further includes monitoring the pressure within the storage tank and calculating a differential pressure reading over time, comparing the differential pressure reading over time to the pressure relief device release rate, and detecting a pressure relief device activation based on the comparison result.