-
公开(公告)号:US10762425B2
公开(公告)日:2020-09-01
申请号:US16134716
申请日:2018-09-18
Applicant: NVIDIA Corporation
Inventor: Sifei Liu , Shalini De Mello , Jinwei Gu , Ming-Hsuan Yang , Jan Kautz
Abstract: A spatial linear propagation network (SLPN) system learns the affinity matrix for vision tasks. An affinity matrix is a generic matrix that defines the similarity of two points in space. The SLPN system is trained for a particular computer vision task and refines an input map (i.e., affinity matrix) that indicates pixels the share a particular property (e.g., color, object, texture, shape, etc.). Inputs to the SLPN system are input data (e.g., pixel values for an image) and the input map corresponding to the input data to be propagated. The input data is processed to produce task-specific affinity values (guidance data). The task-specific affinity values are applied to values in the input map, with at least two weighted values from each column contributing to a value in the refined map data for the adjacent column.
-
2.
公开(公告)号:US20200334502A1
公开(公告)日:2020-10-22
申请号:US16921012
申请日:2020-07-06
Applicant: NVIDIA Corporation
Inventor: Wei-Chih Tu , Ming-Yu Liu , Varun Jampani , Deqing Sun , Ming-Hsuan Yang , Jan Kautz
Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
-
公开(公告)号:US10748036B2
公开(公告)日:2020-08-18
申请号:US16188641
申请日:2018-11-13
Applicant: NVIDIA Corporation
Inventor: Wei-Chih Tu , Ming-Yu Liu , Varun Jampani , Deqing Sun , Ming-Hsuan Yang , Jan Kautz
Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
-
公开(公告)号:US20190244329A1
公开(公告)日:2019-08-08
申请号:US16246375
申请日:2019-01-11
Applicant: NVIDIA Corporation
Inventor: Yijun Li , Ming-Yu Liu , Ming-Hsuan Yang , Jan Kautz
Abstract: Photorealistic image stylization concerns transferring style of a reference photo to a content photo with the constraint that the stylized photo should remain photorealistic. Examples of styles include seasons (summer, winter, etc.), weather (sunny, rainy, foggy, etc.), lighting (daytime, nighttime, etc.). A photorealistic image stylization process includes a stylization step and a smoothing step. The stylization step transfers the style of the reference photo to the content photo. A photo style transfer neural network model receives a photorealistic content image and a photorealistic style image and generates an intermediate stylized photorealistic image that includes the content of the content image modified according to the style image. A smoothing function receives the intermediate stylized photorealistic image and pixel similarity data and generates the stylized photorealistic image, ensuring spatially consistent stylizations.
-
公开(公告)号:US11496773B2
公开(公告)日:2022-11-08
申请号:US17352064
申请日:2021-06-18
Applicant: NVIDIA Corporation
Inventor: Yi-Hsuan Tsai , Ming-Yu Liu , Deqing Sun , Ming-Hsuan Yang , Jan Kautz
IPC: H04N19/85 , H04N19/91 , H04N19/436 , H04N19/46
Abstract: A method, computer readable medium, and system are disclosed for identifying residual video data. This data describes data that is lost during a compression of original video data. For example, the original video data may be compressed and then decompressed, and this result may be compared to the original video data to determine the residual video data. This residual video data is transformed into a smaller format by means of encoding, binarizing, and compressing, and is sent to a destination. At the destination, the residual video data is transformed back into its original format and is used during the decompression of the compressed original video data to improve a quality of the decompressed original video data.
-
公开(公告)号:US11082720B2
公开(公告)日:2021-08-03
申请号:US16191174
申请日:2018-11-14
Applicant: NVIDIA Corporation
Inventor: Yi-Hsuan Tsai , Ming-Yu Liu , Deqing Sun , Ming-Hsuan Yang , Jan Kautz
IPC: H04N19/85 , H04N19/91 , H04N19/436 , H04N19/46
Abstract: A method, computer readable medium, and system are disclosed for identifying residual video data. This data describes data that is lost during a compression of original video data. For example, the original video data may be compressed and then decompressed, and this result may be compared to the original video data to determine the residual video data. This residual video data is transformed into a smaller format by means of encoding, binarizing, and compressing, and is sent to a destination. At the destination, the residual video data is transformed back into its original format and is used during the decompression of the compressed original video data to improve a quality of the decompressed original video data.
-
公开(公告)号:US20190095791A1
公开(公告)日:2019-03-28
申请号:US16134716
申请日:2018-09-18
Applicant: NVIDIA Corporation
Inventor: Sifei Liu , Shalini De Mello , Jinwei Gu , Ming-Hsuan Yang , Jan Kautz
Abstract: A spatial linear propagation network (SLPN) system learns the affinity matrix for vision tasks. An affinity matrix is a generic matrix that defines the similarity of two points in space. The SLPN system is trained for a particular computer vision task and refines an input map (i.e., affinity matrix) that indicates pixels the share a particular property (e.g., color, object, texture, shape, etc.). Inputs to the SLPN system are input data (e.g., pixel values for an image) and the input map corresponding to the input data to be propagated. The input data is processed to produce task-specific affinity values (guidance data). The task-specific affinity values are applied to values in the input map, with at least two weighted values from each column contributing to a value in the refined map data for the adjacent column.
-
公开(公告)号:US11256961B2
公开(公告)日:2022-02-22
申请号:US16921012
申请日:2020-07-06
Applicant: NVIDIA Corporation
Inventor: Wei-Chih Tu , Ming-Yu Liu , Varun Jampani , Deqing Sun , Ming-Hsuan Yang , Jan Kautz
Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
-
公开(公告)号:US20210314629A1
公开(公告)日:2021-10-07
申请号:US17352064
申请日:2021-06-18
Applicant: NVIDIA Corporation
Inventor: Yi-Hsuan Tsai , Ming-Yu Liu , Deqing Sun , Ming-Hsuan Yang , Jan Kautz
IPC: H04N19/85 , H04N19/91 , H04N19/436 , H04N19/46
Abstract: A method, computer readable medium, and system are disclosed for identifying residual video data. This data describes data that is lost during a compression of original video data. For example, the original video data may be compressed and then decompressed, and this result may be compared to the original video data to determine the residual video data. This residual video data is transformed into a smaller format by means of encoding, binarizing, and compressing, and is sent to a destination. At the destination, the residual video data is transformed back into its original format and is used during the decompression of the compressed original video data to improve a quality of the decompressed original video data.
-
10.
公开(公告)号:US20190158884A1
公开(公告)日:2019-05-23
申请号:US16191174
申请日:2018-11-14
Applicant: NVIDIA Corporation
Inventor: Yi-Hsuan Tsai , Ming-Yu Liu , Deqing Sun , Ming-Hsuan Yang , Jan Kautz
IPC: H04N19/85
Abstract: A method, computer readable medium, and system are disclosed for identifying residual video data. This data describes data that is lost during a compression of original video data. For example, the original video data may be compressed and then decompressed, and this result may be compared to the original video data to determine the residual video data. This residual video data is transformed into a smaller format by means of encoding, binarizing, and compressing, and is sent to a destination. At the destination, the residual video data is transformed back into its original format and is used during the decompression of the compressed original video data to improve a quality of the decompressed original video data.
-
-
-
-
-
-
-
-
-