Abstract:
Techniques for use in transferring an assignment of a secure chip of a wireless device from a current subscription manager (SM) of a current mobile network operator (MNO) to a new SM of a new MNO are described. In one illustrative example, the current SM receives a request for transferring the assignment and produces transfer permission data in response. The transfer permission data includes an identifier of the secure chip, an identifier of the current SM, and a digital signature of the current SM. The current SM then sends to the secure chip a transfer permission message which includes the transfer permission data. The transfer permission data indicates a permission for the secure chip to transfer the assignment from the current SM to the new SM. Additional techniques are performed by the secure chip, and the new SM, as described.
Abstract:
A method is provided for encoding characters that specify a source address of an SMS message. The method comprises modifying a type of address field within an originating address field, the modification indicative of an encoding scheme used for the source address of the SMS message.
Abstract:
A method is provided for encoding characters that specify a source address of an SMS message. The method comprises modifying a type of address field within an originating address field, the modification indicative of an encoding scheme used for the source address of the SMS message.
Abstract:
Techniques for use in transferring an assignment of a secure chip of a wireless device from a current subscription manager (SM) of a current mobile network operator (MNO) to a new SM of a new MNO are described. In one illustrative example, the current SM receives a request for transferring the assignment and produces transfer permission data in response. The transfer permission data includes an identifier of the secure chip, an identifier of the current SM, and a digital signature of the current SM. The current SM then sends to the secure chip a transfer permission message which includes the transfer permission data. The transfer permission data indicates a permission for the secure chip to transfer the assignment from the current SM to the new SM. Additional techniques are performed by the secure chip, and the new SM, as described.
Abstract:
A message distribution centre for routing a message from a first subscriber (10) to a second subscriber (20) across a communication network, comprising means for receiving a message for a second subscriber from a first subscriber (50), the message including a subscriber ID for the second subscriber, database (55) for storing distribution addresses corresponding to subscriber IDs; means for interrogating the database on receiving a message to determine whether the database includes the distribution address associated with the ID of the second subscriber; means for retrieving the distribution address for the second subscriber from a register (70) associated with the second subscriber if the distribution address is not stored in the database; means for storing the retrieved distribution address for the second subscriber and associated subscriber ID in the database; and means (52) for forwarding the message and the subscriber ID to the distribution address of the second subscriber.
Abstract:
Techniques for use in transferring an assignment of a secure chip of a wireless device from a current subscription manager (SM) of a current mobile network operator (MNO) to a new SM of a new MNO are described. In one illustrative example, the current SM receives a request for transferring the assignment and produces transfer permission data in response. The transfer permission data includes an identifier of the secure chip, an identifier of the current SM, and a digital signature of the current SM. The current SM then sends to the secure chip a transfer permission message which includes the transfer permission data. The transfer permission data indicates a permission for the secure chip to transfer the assignment from the current SM to the new SM. Additional techniques are performed by the secure chip, and the new SM, as described.