Abstract:
A movable plate 5 and torsion bars 6 are monolithically formed in a semiconductor substrate 2. A flat coil 7 is formed on peripheries of the movable plate 5 while a photodiode 8 is formed on a central portion of the movable plate 5. Permanent magnets 10A, 10B, 11A and 11B are provided on upper and lower spaces of the peripheries of the movable plate 5 while coils 12A and 12B for detecting a displacement angle of the movable plate 5 are provided on lower spaces of the peripheries of the movable plate 5. Flowing a current into the flat coil 7 generates a driving force depending on a relation with magnetic fields induced by the permanent magnets 10A, 10B, 11A and 11B, which makes the movable plate 5 to rotate axially around the torsion bars 6 to vary an orienting direction of an optical axis of the photodiode 8. The displacement angle of the optical axis is detectable by changes in mutual inductances between the flat coil 7 and the detection coils 12A and 12B, namely, changes in induction voltages of the detection coils 12A and 12B.
Abstract:
A slim-type small size electromagnetic relay is made using semiconductor manufacturing techniques to form a silicon substrate 2 having a planar movable plate 5 and a torsion bar 6 for axially supporting the movable plate 5 formed integrally therewith, with a planar coil 7 provided on an upper face of the movable plate 5 and a movable contact 9 provided on a lower face. Glass substrates 3, 4 are provided on upper and lower faces of the silicon substrate 2, with fixed contact 11 contactable with the movable contact 9 provided on the lower glass substrate 4. Permanent magnets 13A, 13B and 14A, 14B for producing a magnetic field at the planar coil 7 are fixed to the glass substrates 3, 4. Rotation of the movable plate 5 against the torsion force of the torsion bar 6 is controlled by passing a current through the planar coil 7 to produce a magnetic force, thereby causing contact or separation of the movable contact 9 and the fixed contact 11.
Abstract:
The present invention provides an electromagnetically actuating optical deflecting elements which can be manufactured out of reduced number of components and are capable of being actuated at lower frequencies and at wider deflecting angles without causing mechanical influences of the metal wiring on beams of the optical deflecting element.For that purpose, the electromagnetically actuating optical deflecting element comprises: a movable part having a light reflecting plane and a coil; a base component having a magnetic field generating means; and a pair of beams which axially support said movable part on to the base component, The movable part is actuated by an electromagnetic force generated by an electric current flowing through the coil and the magnetic field generating means. The beams 108 are constituted by one material having functions to perform as conductors for supplying electric current to the coil, to support the movable part, to perform as springs for returning the movable part to a starting position.
Abstract:
In order to provide an anisotropic conductive sheet which can be applied to more finely and more narrowly pitched electrodes and also to provide spring electrodes applied for the anisotropic conductive sheet, the spring electrodes manufactured as follows. A part having a bending leaf spring shape is formed out of a monocrystal silicon by anisotropic etching and gold is plated on the surface of the part so as to obtain a silicon spring electrode 1. The silicon spring electrodes 1 are inserted in through holes formed on a silicone rubber sheet and fixed to the through holes.
Abstract:
A laser beam generated from a laser beam generating means 201 is reflected on a semiconductor mirror galvanometer 102. A region 105 to be inspected is scanned with the reflected laser beam 106. The laser beam 106 passing through the region 105 to be inspected is received by a light receiving device array 130. A pulse train included in an output signal produced from the light receiving device array 130 are monitored by a signal processing circuit 206. If an obstacle introduces into the region 105 to be inspected and induces a pulse deficiency in the pulse train, the deficiency is detected by use of a pulse deficiency detecting circuit 204. A constitution mentioned above provides an optical barrier apparatus capable of reducing manufacturing costs without endangering a fail-safe property.
Abstract:
The present invention relates to a planar type electromagnetic actuator of two axis construction, having two movable plates (12A, 12B) with pivotal supports at right angles to each other. A pair of static magnetic field generating devices (4, 5) are arranged facing each other on either side of the movable plates (12A, 12B), and aligned with one diagonal direction of the movable plates (12A, 12B) so that a magnetic field acts on the movable plates (12A, 12B). A magnetic force due to the mutual action with a current flowing through drive coils (15A, 15B), acts on the movable plates (12A, 12B), to thus drive the movable plates (12A, 12B). As a result, the number of components for the magnetic field generating devices can be reduced, the construction of the electromagnetic actuator simplified, and construction costs reduced.
Abstract:
An electromagnetic actuator includes an external movable plate formed integrally with a semiconductor substrate. A first torsion bar movably supports the movable plate with respect to the semiconductor substrate. An internal movable plate is disposed inside the external movable plate. A second torsion bar rotatably supports the internal movable plate relative to the external movable plate, and is positioned at a right angle relative to the first torsion bar; and further includes a single turn first driving coil extending around the external movable plate; a single turn second driving coil extending around the internal movable plate, and which is connected in series with the first driving coil; magnetic field generating means for applying a magnetic field to the first and second driving coils; and an optical element having an optical axis and located on the internal movable plate. A current is caused to flow through the first and second driving coils to produce a force corresponding to each coil and to each plate, the external and internal movable plates displacing in response to the corresponding coil forces applied thereto and thus vary the direction of displacement of said optical axis. In one embodiment, the single turn first and second driving coils are closed-looped. A method of manufacturing the electromagnetic actuator includes forming an aluminum layer on the semiconductor substrate by aluminum deposition; and forming the driving coils from the aluminum layer through photolithography and aluminum etching. Other embodiments are disclosed.
Abstract:
An electromagnetic actuator for driving a movable plate equipped with an optical element such as a mirror on the basis of the operation principle of a galvanometer. The structure of the movable plate is simplified, and a driving coil and a wiring are formed by aluminium vapor deposition to improve durability. When an impact brings the movable plate outside the allowable rocking range of the movable plate, a stopper prevents excessive displacement of the movable plate to thereby prevent destruction of a torsion bar that supports the movable plate. Moreover, electrical connection in the torsion bar is eliminated to prolong the service life, and a production process is simplified to reduce a production cost.
Abstract:
A laser beam generated from a laser beam generating means 201 is reflected on a semiconductor mirror galvanometer 102. A region 105 to be inspected is scanned with the reflected laser beam 106. The laser beam 106 passing through the region 105 to be inspected is received by a light receiving device array 130. A pulse train included in an output signal produced from the light receiving device array 130 are monitored by a signal processing circuit 206. If an obstacle intrudes into the region 105 to be inspected and induces a pulse deficiency in the pulse train, the deficiency is detected by use of a pulse deficiency detecting circuit 204. A constitution mentioned above provides an optical barrier apparatus capable of reducing manufacturing costs without endangering a fail-safe property.
Abstract:
A laser beam generated from a laser beam generating means 201 is reflected on a semiconductor mirror galvanometer 102. A region 105 to be inspected is scanned with the reflected laser beam 106. The laser beam 106 passing through the region 105 to be inspected is received by a light receiving device array 130. A pulse train included in an output signal produced from the light receiving device array 130 are monitored by a signal processing circuit 206. If an obstacle intrudes into the region 105 to be inspected and induces a pulse deficiency in the pulse train, the deficiency is detected by use of a pulse deficiency detecting circuit 204. A constitution mentioned above provides an optical barrier apparatus capable of reducing manufacturing costs without endangering a fail-safe property.