Abstract:
A temperature control module and a support block are mounted on a metal stem. A dielectric substrate is mounted on a side surface of the support block. A support block is mounted on a cooling surface of the temperature control module. A dielectric substrate is mounted on a side surface of the support block. A semiconductor optical modulation element is mounted on the dielectric substrate. A lead pin and a signal line are connected through a bonding wire. The signal line and a signal conductor are connected through a bonding wire. The signal conductor and the semiconductor optical modulation element are connected through a bonding wire.
Abstract:
A semiconductor device should have a structure that allows locating electronic components in a region under a bonding pad. The semiconductor device includes a bonding pad constituting the external connection terminal; a region under the bonding pad including at least two copper layers and a connection via plug, under said bonding pad, disposed so as to connect copper layers that form a pair out of the at least two copper layers; a seal ring constituted of an annular conductor, disposed so as to surround the region under the bonding pad, and to connect a lower one of the copper layers that form said pair to copper layer to form a pair with the lower copper layer; and an interconnect connected to the bonding pad outside the seal ring.
Abstract:
A first interlayer insulating film and an etching stopper film are sequentially formed on a semiconductor substrate with a surface area on which first wiring is formed. The etching stopper film is patterned so as to correspond to a pattern of via hole formed on the first interlayer insulating film and a pattern of forming a second wiring. A second interlayer insulating film is formed on the etching stopped film for forming the second wiring, a wiring trench is formed by etching the second interlayer insulating film. Continuously, the via hole is formed by etching the first interlayer insulating film while having the etching stopper film as a photomask. Conductive materials are laid in the via hole and the wiring trench so that the second wiring connected to the first wiring is formed.
Abstract:
An optical detecting device includes a light-detecting element for outputting an electrical signal, a pre-amplifier for amplifying the electrical signal, a signal line connected to an output of the pre-amplifier, and a resistor and a capacitor connected in series between the signal line and GND.
Abstract:
A light modulation device includes: an input terminal into which a modulation signal is input; a light modulation element including an anode connected to the input terminal and a cathode that is grounded; a matching resistor connected in parallel with the light modulation element; a matching capacitor connected to the light modulation element and connected in series to the matching resistor; and a protective resistor connected in parallel with the light modulation element, the matching resistor, and the matching capacitor.
Abstract:
A light receiving element comprises: a photodiode including an optical waveguide, an end surface of the optical waveguide being a light receiving surface of the photodiode; a signal electrode and a bias electrode on a common surface of the photodiode, the signal electrode being connected to an anode of the photodiode, the bias electrode being connected to a cathode of the photodiode; an insulating film on the bias electrode; and a metal electrode on the insulating film.