Abstract:
A microscopy system includes a microscope apparatus. The microscope apparatus has an objective and a correction device correcting for a spherical aberration, and obtains image data. The microscopy system further includes an estimator that estimates, on the basis of information on a medium placed between the objective and an observation target plane, an amount of spherical aberration that occurs in the microscope apparatus. The microscopy system determines, by use of a contrast value calculated from the image data obtained by the microscope apparatus and an amount of spherical aberration that is estimated by the estimator, a target set value that is a set value of the correction device, the set value corresponding to the amount of spherical aberration that occurs in the microscope apparatus.
Abstract:
A microscope system according to the present invention includes a laser light source, a plurality of laser microscopes, and an optical path switching unit that is provided between the laser light source and the laser microscopes and switches a supply destination of a laser beam among the plurality of laser microscopes by changing a beam splitter to be arranged on an incident optical axis, in which each of the laser microscopes includes an optical axis adjustment unit that adjusts an optical axis of the laser beam, and a control unit that controls the optical axis adjustment unit based on identification information about the beam splitter arranged on the incident optical axis.
Abstract:
A microscopy system includes a microscope apparatus that has an objective and a correction device correcting for a spherical aberration, and a refractive index calculator that calculates a refractive index of a sample at a target position in the sample on the basis of a plurality of target set values each of which is a set value of the correction device and each of which corresponds to an amount of spherical aberration that occurs in the microscope apparatus when an observation target plane is situated at a different position in the sample in an optical-axis direction of the objective.
Abstract:
Provided is a microscope system that including: a plurality of image-capturing sections that are provided in a microscope to capture a plurality of lights from a specimen; a capture-condition setting section that allows a user to set an image-capturing order of the plurality of groups into which the lights are classified, and the image-capturing sections for image-capturing of the lights; and a control section that causes the microscope to perform image capturing of the lights according to contents set in the capture-condition setting section. The capture-condition setting section has a table in which an first axis indicates the groups and a second axis indicates the image-capturing sections, and a plurality of cells that are each associated with one of the groups and one of the image-capturing sections are arrayed in a matrix; and captured items that indicate image-capturing of the lights are set in the cells.
Abstract:
A microscope system includes a correction apparatus to correct a spherical aberration and comprises: a microscope apparatus that obtains a microscopic image; and a control apparatus that causes a display apparatus to display an image evaluation value of the microscopic image and setting information of the correction apparatus at the time of obtaining the microscopic image. The control apparatus causes the display apparatus to display a first image evaluation value of a new microscopic image and first setting information of the correction apparatus at the time of obtaining the new microscopic image, in addition to a second image evaluation value and second setting information that have already been displayed on the display apparatus
Abstract:
Reacquisition of an image is avoided, thus improving working efficiency. Provided is a microscope device including a plurality of confocal observation units or image capturing units that are capable of acquiring images of the same sample S, a region specifying unit that specifies, on a reference image acquired by a confocal observation unit or image capturing unit, an ROI of an observation image to be acquired by another image capturing unit or confocal observation unit, and a field-of-view displaying unit that displays, superimposed on the reference image, a maximum-limit indication indicating a maximum field of view of the other image capturing unit or confocal observation unit.