Abstract:
A measurement device suitable to measure a load applied by the muscular-skeletal system is disclosed. The measurement device can be a prosthetic component having an articular surface for measuring parameters of a joint in extension or flexion. A first and second support structure forms an enclosure having load-bearing surfaces. The first support structure includes at least one alignment feature extending from a surface. The second support structure includes a corresponding opening for receiving the alignment feature. The first and second support structures include a peripheral channel and corresponding flange to support sealing of the enclosure. Interior to the enclosure is the measurement system. The alignment feature couples through and aligns a first load plate, a sensor array, and a second load plate to surfaces of the first and second support structures. The sensor array is coupled to electronic circuitry in the enclosure via a unitary circuit board.
Abstract:
A distractor suitable for measuring a force, pressure, or load applied by the muscular-skeletal system is disclosed. An insert couples to the distractor. The insert has at least one articular surface allowing movement of the muscular-skeletal system when the distractor is inserted thereto. The insert can be a passive insert having no measurement devices. A sensor array and electronics are housed within the distractor. The distractor can dynamically distract the muscular-skeletal system. A handle of the distractor can be rotated to increase or decrease the spacing between support structures. The measurement system comprises a sensor array and electronic circuitry. In one embodiment, the electronic circuitry is coupled to the sensor array by a unitary circuit board or substrate. The sensors can be integrated into the unitary circuit board. For example, the sensors can comprise elastically compressible capacitors or piezo-resistive devices. The distractor wirelessly couples to a remote system for providing position and magnitude measurement data of the force, pressure, or load being measured.