Abstract:
The present invention is a sensor for detecting a microorganism, which is provided with a detection unit equipped with a detection electrode and a polymer layer, wherein the polymer layer is arranged on the detection electrode and is provided with a template having a three-dimensional structure complementary to a three-dimensional structure of a microorganism to be detected. The sensor detects a microorganism on the basis of the captured state of the microorganism onto the template. The polymer layer is formed by a manufacturing method including a polymerization step of polymerizing a monomer in the presence of the microorganism to be detected to form a polymer layer having the microorganism incorporated therein on the detection electrode, and a disruption step of bringing at least a part of the microorganism incorporated in the polymer layer into contact with a solution containing a lytic enzyme to disrupt the microorganism.
Abstract:
An assembling apparatus assembles beads different in particle size from each other. The assembling apparatus includes a substrate and a photothermal light source. The substrate is constructed to be able to hold a sample in which the beads are dispersed. The photothermal light source irradiates the substrate or the sample with laser beams to thereby produce a temperature difference in the sample.
Abstract:
A detection device detects an analyte that may be contained in a specimen. The detection device includes a plurality of gold nanoparticles, an optical trapping light source, an illumination light source, an objective lens, an image pick-up device, and a computation unit. The plurality of gold nanoparticles are each modified with a probe DNA allowing the analyte to specifically adhere thereto. The optical trapping light source emits polarized light for assembling the plurality of gold nanoparticles together. The objective lens focuses and introduces the polarized light into a liquid containing a specimen and the plurality of gold nanoparticles. The image pick-up device receives light from the liquid. The computation unit detects an analyte based on a signal received from the image pick-up device.
Abstract:
The purpose of the present invention is to collect a plurality of microscopic objects dispersed in a liquid by light irradiation, and also trap them. A collecting device for bacteria collects a plurality of bacteria dispersed in a sample liquid. The collecting device is provided with a laser beam source that emits laser beam and a honeycomb polymer film constituted so as to be able to hold the liquid. Walls prescribing pores for trapping the plurality of bacteria dispersed in the liquid are formed on the honeycomb polymer film, and also a thin film that includes a material for converting light from the laser beam source to heat is formed on the honeycomb polymer film. The thin film heats the liquid of the sample through the conversion of the laser beam from the laser beam source to heat, thereby causing a convection in the liquid.
Abstract:
A polymer membrane for cancer cell detection having a surface provided with a mold having a three-dimensional structure complementary to a portion of a steric structure of a cancer cell to be detected; a method of producing the same; and a cancer cell detection device including the polymer membrane are provided. The polymer membrane for cancer cell detection can be obtained, for example, by a producing method including: polymerizing monomers in presence of cancer cells to be detected, to form a cancer cell-containing polymer membrane having the cancer cells incorporated therein; and removing at least part of the cancer cells incorporated in the cancer cell-containing polymer membrane.