Abstract:
Provided is a compact and lightweight electric field probe which has a transmitting/receiving function whereby piezoelectric crystals can be excited through the application of an alternating current electric field thereto, and piezoelectric effect signals can be detected with sufficient sensitivity. Also provided are a control system for the same, and a piezoelectric crystal detector. The electric near-field probe is provided with a capacitor, in which the space between two metal plates that are positioned parallel to each other is filled by a conductor or air, and a series resonance circuit, which has a prescribed resonance frequency and is connected in series to an inverter that is formed by winding a conductive wire around a toroidal core. The electric near-field probe is configured such that: an electric near-field, which originates from the leakage electric field from the capacitor generated by the application of alternating current voltage to the series resonance circuit, is transmitted to the piezoelectric crystals, and the piezoelectric crystals are excited; and the piezoelectric effect signal, which is generated by the excited piezoelectric crystals, is received by the capacitor, and is detected by the series resonance circuit. The control system is for said electric near-field probe.
Abstract:
Provided is an examination technique that can quickly and reliably examine, from the outside of a container, whether a liquid which fills the container contains an explosive or the like, without being influenced by such things as the light transmissivity or size of the container, or the amount of liquid remaining in the container or the position of a label. In the present invention, a liquid examination device is formed by integrating the following: a near infrared-light examination device that examines whether a liquid which fills a container contains an explosive, an explosive raw material, and/or an illicit drug by projecting near infrared light into the liquid from outside of an optically transparent container, receiving the near infrared light which passed through the liquid or the near infrared light which was scattered by the liquid, and analyzing the absorption spectrum of such light; and an ultrasonic wave examination device that examines whether a liquid which fills a container contains an explosive, an explosive raw material, and/or an illicit drug by receiving the reflected waves of ultrasonic waves projected towards the liquid from outside of a metal container, and analyzing the ultrasonic wave speed of such waves.