Abstract:
An ophthalmic examination apparatus includes a visual target projection system including a visual target presentation portion that presents a fixed visual target to left and right subject eyes, an objective measurement optical system that objectively measures eye characteristics of the left and right subject eyes, and a controller that controls each portion of the apparatus, wherein the fixed visual target is a visual target for the left eye and a visual target for the right eye that are to be respectively projected to the left and right subject eyes and have a same drawing pattern in positions where up and down direction positions to visual target flames are the same.
Abstract:
An eye-fatigue examining device and an eye-fatigue examining method capable of examining eye fatigue of a subject's eye regardless of an age of a patient are provided. The eye-fatigue examining device includes: a light quantity difference adjusting unit that increases a light quantity difference between lights respectively incident on right and left subject's eyes; a gaze direction detecting unit that detects gaze directions of the respective subject's eyes while the light quantity difference adjusting unit increases the light quantity difference; and a light quantity difference deciding unit that decides a specific light quantity difference at which a change in the gaze directions due to the increase in the light quantity difference occurs, based on the detection result of the gaze direction detecting unit.
Abstract:
An ophthalmic examination apparatus includes a visual target projection system that includes a visual target presentation portion that presents a fixed visual target to left and right subject eyes, an objective measurement optical system that objectively measures eye characteristics of the left and right subject eyes, and a controller that controls each portion of the apparatus, wherein the controller measures the eye characteristics of the left and right subject eyes with the objective measurement optical system and acquires an objective refraction value as objective measurement information when fusion is attempted with left and right subject eyes with respect to a change in the convergence distance.
Abstract:
An ophthalmologic apparatus includes a visual target presenting portion that presents fixation targets to subject eyes; an objective measurement optical system that objectively measures eye characteristics of the subject eyes; and a controller. Each of the fixation targets includes fusion targets depicted in a manner that allows binocular fusion while the subject eyes respectively view the fixation targets. The visual target presenting portion presents the fixation targets while changing an examination distance from the subject eyes to the fixation target when an anisometropia is induced. In the anisometropia, one subject eye is in a fully corrected condition and the other subject eye is corrected by a predetermined degree from the fully corrected condition. The controller controls the objective measurement optical system to measure the eye characteristics while the subject eyes binocularly view the fixation targets and acquire refractive values of the subject eyes as objective measurement information.
Abstract:
An ophthalmologic device includes: a visual target presenting unit configured to present a common visual target to be viewed with both subject's eyes; a presenting distance changing unit configured to change a presenting distance of the visual target presented by the visual target presenting unit from a predetermined far vision distance to a predetermined near vision distance; an ocular characteristic acquiring unit configured to objectively acquire an optical characteristic of the subject's eyes; an addition power adding unit configured to add the addition power to the both subject's eyes; and a control unit configured to cause the presenting distance changing unit to change the presenting distance and the ocular characteristic acquiring unit to continuously acquire the optical characteristic, in a state in which an addition power is added to the both subject's eyes by the addition power adding unit.
Abstract:
A designing method of a contact lens for myopia progression suppression including: providing a tonic accommodation relaxation region in which an additional power whose maximum value is from +0.25 to +0.75 diopters is set with respect to a correction power that is required for realizing a proper correction, the additional power being capable of relaxing a tonic accommodation without improving an aberration off an optical axis and an accommodation lag on the optical axis; and providing a proper correction region in which the additional power is not set at least on an optical center.