Abstract:
An organic electroluminescent device includes a substrate, a first electrode arranged on the substrate, and a functional organic layer arranged on the first electrode. The functional organic layer is adapted to emit electromagnetic radiation A second electrode is arranged on the functional organic layer. The functional organic layer includes a matrix material and an emitter material. The emitter material is neutral or ionically charged. The emitter material is selected from the group of ionic transition metal complex, neutral transition metal complex, polymer emitter and combinations thereof, wherein the matrix material comprises at least one ionic charge carrier transporting material, wherein the ionic charge carrier transporting material is selected from the group of electron-transporting material, hole-transporting material, ambipolar-transporting material and combinations thereof, and wherein the at least one ionic charge carrier transporting material is ionically charged.
Abstract:
A conversion element, an optoelectronic component, an arrangement and a method for producing a conversion element are disclosed. In an embodiment an arrangement includes a conversion element including a wavelength converting conversion material, a matrix material in which the conversion material is embedded and a substrate on which the matrix material with the embedded conversion material is directly arranged, wherein the matrix material comprises at least one condensed sol-gel material selected from the group consisting of water glass, metal phosphate, aluminum phosphate, monoaluminum phosphate, modified monoaluminum phosphate, alkoxytetramethoxysilane, tetraethylorthosilicate, methyltrimethoxysilane, methyltriethoxysilane, titanium alkoxide, silica sol, metal alkoxide, metal oxane, and metal alkoxane, and a laser source configured to emit primary radiation during operation, wherein the conversion element is arranged in a beam path of the laser source, wherein the conversion element is mechanically immovably mounted with respect to the laser source, and wherein the primary radiation of the laser source is dynamically arranged to the conversion element.
Abstract:
A conversion element, an optoelectronic component, an arrangement and a method for producing a conversion element are disclosed. In an embodiment an arrangement includes a conversion element having a wavelength converting conversion material, a matrix material in which the conversion material is embedded and a substrate on which the matrix material with the embedded conversion material is directly arranged, wherein at least one condensed sol-gel material, and a laser source configured to emit primary radiation during operation, wherein the conversion element is arranged in a beam path of the laser source, wherein the conversion element is mechanically immovably mounted with respect to the laser source, and wherein the primary radiation of the laser source is dynamically arranged to the conversion element.
Abstract:
A conversion element, an optoelectronic component, an arrangement and a method for producing a conversion element are disclosed. In an embodiment an arrangement includes a conversion element having a wavelength converting conversion material, a matrix material in which the conversion material is embedded and a substrate on which the matrix material with the embedded conversion material is directly arranged, wherein at least one condensed sol-gel material, and a laser source configured to emit primary radiation during operation, wherein the conversion element is arranged in a beam path of the laser source, wherein the conversion element is mechanically immovably mounted with respect to the laser source, and wherein the primary radiation of the laser source is dynamically arranged to the conversion element.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes at least one laser source configured to emit at least one laser beam during operation and a self-supporting conversion element arranged in a beam path of the laser beam, wherein the self-supporting conversion element comprises a substrate followed by a first layer, the first layer being directly bonded to the substrate and comprising at least one conversion material embedded in a glass matrix, wherein the glass matrix has a proportion of 50 vol % to 80 vol % inclusive in the first layer, wherein the substrate is free of the glass matrix and of the conversion material and mechanically stabilize the first layer, and wherein the first layer has a layer thickness of less than 200 μm.