Abstract:
In a method for manufacturing a multilayer ceramic substrate in which, after firing is performed while restriction layers which are not sintered in the firing are disposed on primary surfaces of an unsintered ceramic laminate, the restriction layers are removed, when a bonding force generated by each restriction layer is increased, the restriction layers cannot be easily removed, and when the restriction layers are designed to be easily removed, the bonding force decreases. In an unsintered ceramic laminate, conductive patterns containing Ag as a primary component are formed, and in addition, at least one first base layer and at least one second base layer are also laminated to each other. The second base layer is disposed along at least one primary surface of the unsintered ceramic laminate, and restriction layers are disposed so as to be in contact with the second base layers. The second base layer is formed to have a composition so that Ag is likely to diffuse during firing as compared to that of the first base layer, and as a result, the glass softening point decreases; hence, a restriction force is improved without using means for decreasing the particle diameter of a sintering resistant ceramic powder contained in the restriction layers.
Abstract:
A process for producing a multilayered ceramic substrate having a step portion of a desired shape does not require complicated process steps and equipment. An auxiliary-layer-lined unfired ceramic body, which has a step portion in a principal surface thereof, has an unfired ceramic body and an auxiliary layer which is adhered to one principal surface of the unfired ceramic body and which is made of a material that is substantially unsinterable at a temperature at which the unfired ceramic body is fired. The auxiliary-layer-lined unfired ceramic body is fired at a temperature at which the unfired ceramic body is sinterable but the auxiliary layer is substantially unsinterable, while the auxiliary layer remains adhered to the unfired ceramic body. A pressing operation is performed by using a die having a projection placed on the side of the auxiliary-layer-lined unfired ceramic body retaining the auxiliary layer, so that the step portion, having a shape corresponding to the outer shape of the die projection, is formed in the side of the auxiliary-layer-lined unfired ceramic body retaining the auxiliary layer.
Abstract:
In a method for manufacturing a ceramic multilayer substrate, when a green ceramic stack prepared by stacking a plurality of ceramic green sheets is fired simultaneously with a ceramic chip electronic component disposed inside the green ceramic stack and including an external terminal electrode to produce a ceramic multilayer substrate having the ceramic chip electronic component inside, a paste layer is disposed in advance between the ceramic chip electronic component and the green ceramic stack, and these three are fired.
Abstract:
A multilayer substrate having a built-in chip-type electronic component includes a ceramic laminate having a plurality of ceramic layers, a chip-type electronic component disposed in the ceramic laminate and having an external terminal electrode, and a via conductor disposed in the ceramic layers in the lamination direction. The external terminal electrode of the chip-type electronic component is connected to the via conductor, and a connection step is provided in at least one of the upper and lower end surfaces of the via conductor.
Abstract:
A laminate includes base material layers and interlayer constraining layers disposed therebetween. The base material layers are formed of a sintered body of a first powder including a glass material and a first ceramic material, and the interlayer constraining layer includes a second powder including a second ceramic material that will not be sintered at a temperature for melting the glass material, and is in such a state that the second powder adheres together by diffusion or flow of a portion of the first powder including the glass material included in the base material layer at the time of baking. The incorporated element is in such a state that an entire periphery thereof is covered with the interlayer constraining layer.
Abstract:
In a method for manufacturing a ceramic multilayer substrate, when a green ceramic stack prepared by stacking a plurality of ceramic green sheets is fired simultaneously with a ceramic chip electronic component disposed inside the green ceramic stack and including an external terminal electrode to produce a ceramic multilayer substrate having the ceramic chip electronic component inside, a paste layer is disposed in advance between the ceramic chip electronic component and the green ceramic stack, and these three are fired.
Abstract:
A laminated body includes, in sequence, a base layer mainly composed of a ceramic material and a glass material, a first constraining layer that is primarily made of a ceramic material that is not sintered at a temperature at which the base layer is sintered, a second constraining layer primarily made of a ceramic material and a glass material that are sintered at the temperature at which the base layer is sintered, and a third constraining layer primarily made of a ceramic material that is not sintered at the temperature at which the base layer is sintered. The laminated body is subsequently fired at the temperature at which the base layer is sintered. The first, second, and third constraining layers are removed from the fired laminated body to provide a ceramic body that is a sinter of the base layer. After the firing, adhesion between the base layer and the first constraining layer and adhesion between the second constraining layer and the first constraining layer are different from each other.
Abstract:
In a method for manufacturing a laminated ceramic electronic component, in order to form a green ceramic laminate to be fired, first ceramic green layers which include first conductor patterns including Ag as a main component and which include a first ceramic material including a first glass component are disposed in surface layer portions. Second ceramic green layers which include second conductor patterns including Ag as a main component, which include a second ceramic material containing a second glass component, and which include a composition in which Ag diffuses than more easily in the first ceramic green layer during firing are disposed in inner layer portions. The green ceramic laminate is fired to produce a multilayer ceramic substrate.
Abstract:
When a ceramic substrate is manufactured through a constraint firing step that uses a constraining layer, the constraining layer is removed without causing significant damage to a sintered base layer or an electrode formed on the surface of the sintered base layer, and the electrode can be reliably exposed. A green stacked body having a base layer and a constraining layer disposed so as to be in contact with at least one principal surface of the base layer is formed. A fired stacked body having a sintered base layer and a green constraining layer is then obtained by firing the green stacked body to sinter the base layer. Subsequently, the constraining layer is removed from the sintered base layer by vibrating media that are disposed so as to be in contact with the constraining layer.
Abstract:
A ceramic multilayer substrate incorporating a chip-type ceramic component, in which, even if the chip-type ceramic component is mounted on the surface of the ceramic multilayer substrate, bonding strength between the chip-type ceramic component and an internal conductor or a surface electrode of the ceramic multilayer substrate is greatly improved and increased. The ceramic multilayer substrate includes a ceramic laminate in which a plurality of ceramic layers are stacked, an internal conductor disposed in the ceramic laminate, a surface electrode disposed on the upper surface of the ceramic laminate, and a chip-type ceramic component bonded to the internal conductor or the surface electrode through an external electrode. The internal conductor or the surface electrode is bonded to the external electrode through a connecting electrode, and the connecting electrode forms a solid solution with any of the internal conductor, the surface electrode, and the external electrode.