Abstract:
A cellulosic fiber includes a fiber body including a cellulosic material and non-encapsulated phase change material dispersed within the cellulosic material. The non-encapsulated phase change material forms a plurality of distinct domains dispersed within the cellulosic material. The non-encapsulated phase change material has a latent heat of at least 40 Joules per gram and the cellulosic fiber has a latent heat between 9.8 Joules per gram and 132 Joules per gram and a transition temperature in the range of 0° C. to 100° C., and cellulosic fiber provides thermal regulation based on at least one of absorption and release of the latent heat at the transition temperature.
Abstract:
An electronic device having one or more components that generate heat during operation includes a structure for temperature management and heat dissipation. The structure for temperature management and heat dissipation comprises a heat transfer substrate having a surface that is in thermal communication with the ambient environment and a temperature management material in physical contact with at least a portion of the one or more components of the electronic device and at least a portion of the heat transfer substrate. The temperature management material comprises a polymeric phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and a thermal conductive filler.
Abstract:
An article comprises a substrate, a first functional polymeric phase change material, and a plurality of containment structures that contain the first functional polymeric phase change material. The article may further comprise a second phase change material chemically bound to at least one of the plurality of containment structures or the substrate. In certain embodiments, the article further comprises a second phase change material and a binder that contains at least one of the first polymeric phase change material and the second phase change material. The containment structure may be a microcapsule or a particulate confinement material
Abstract:
A viscose fiber comprises a fiber body including a regenerated cellulosic material and a plurality of microcapsules dispersed in the regenerated cellulosic material. The regenerated cellulosic material is derived from an organic plant material and the plurality of microcapsules containing a phase change material has a transition temperature in the range of 0° C. to 100° C., the phase change material providing thermal regulation based on at least one of absorption and release of latent heat at the transition temperature.
Abstract:
An electronic device having one or more components that generate heat during operation includes a structure for temperature management and heat dissipation. The structure for temperature management and heat dissipation comprises a heat transfer substrate having a surface that is in thermal communication with the ambient environment and a temperature management material in physical contact with at least a portion of the one or more components of the electronic device and at least a portion of the heat transfer substrate. The temperature management material comprises a polymeric phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and a thermal conductive filler.
Abstract:
Polymeric composites and methods of manufacturing polymeric composites are described. In one embodiment, a set of microcapsules containing a phase change material are mixed with a dispersing polymeric material to form a first blend. The dispersing polymeric material has a latent heat of at least 40 J/g and a transition temperature in the range of 0° C. to 50° C. The first blend is processed to form a polymeric composite. The polymeric composite can be formed in a variety of shapes, such as pellets, fibers, flakes, sheets, films, rods, and so forth. The polymeric composite can be used as is or incorporated in various articles where a thermal regulating property is desired.
Abstract:
A temperature regulating article comprises a substrate and a polymeric phase change material bound to the substrate, wherein the polymeric phase change material is characterized by including a precisely branched polymer with substantially equally spaced repeating sidechains. In other embodiments the polymeric phase change material includes between 20 and 200 branches per 1000 carbon units, has a latent heat of at least 5 Joules per gram, and a transition temperature between 0° C. and 40° C.
Abstract:
In accordance with one aspect, a material for energy management and peak energy reduction in a building structure, comprises an insulative base material, a first phase change material, and a functional polymeric phase change material that dynamically absorbs and releases heat to adjust heat transfer at or within a temperature stabilizing range. The functional polymeric phase change material has at least one phase change temperature in the range between −10° C. and 100° C. and a phase change enthalpy of at least 5 Joules per gram, the functional polymeric phase change material including a plurality of polymer chains that include a backbone chain and a plurality of side chains, wherein a first portion of the plurality of polymer chains are crosslinked to each other, wherein a second portion of the plurality of polymer chains are crosslinked with the first phase change material and a third portion of the plurality of side chains are mechanically entangled with the inorganic insulative base material.
Abstract:
This disclosure provides casings and materials for the thermal management and protection of an electrochemical cell. The casing may also comprise a composite polymeric material for electrochemical cell thermal management, the composite polymeric material comprising a crosslinked polyether polyol phase change material configured to be in physical contact with at least a portion of an electrochemical cell.
Abstract:
This disclosure provides a casing for the thermal management and protection of an electrochemical cell. The casing may comprise an inner surface configured to be in physical contact with at least a portion of an outer surface of an electrochemical cell. The inner surface may be substantially solid at room temperature. The casing may also comprise a polymer matrix which itself comprises two or more temperature management materials. At least one of the two or more temperature management materials may comprise a microencapsulated phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and at least one other of the two or more temperature management materials may comprise an elastomeric material. The polymer matrix may be substantially homogeneous.