Abstract:
A vertical-view camera (16) delivers an image signal (ScamV) of the ground overflown by the drone. Gyrometric sensors (102) measure the Euler angles (φ, θ, Ψ) characterizing the attitude of the drone and delivering a gyrometric signal (Sgyro) representative of the instantaneous rotations. Rotation compensation means (136) receive the image signal and the gyrometric signal and deliver retimed image data, compensated for the rotations, then used to estimate the horizontal speeds of the drone. The camera and the inertial unit are piloted by a common clock (160), and it is provided a circuit (170) for determining the value of the phase-shift between the gyrometric signal and the image signal, and to apply this phase-shift value at the input of the rotation compensation means (136) to resynchronize the image signal onto the gyrometric signal before computation of the retimed image data.
Abstract:
A vertical-view camera (16) delivers an image signal (ScamV) of the ground overflown by the drone. Gyrometric sensors (102) measure the Euler angles (φ, θ, Ψ) characterizing the attitude of the drone and delivering a gyrometric signal (Sgyro) representative of the instantaneous rotations. Rotation compensation means (136) receive the image signal and the gyrometric signal and deliver retimed image data, compensated for the rotations, then used to estimate the horizontal speeds of the drone. The camera and the inertial unit are piloted by a common clock (160), and it is provided a circuit (170) for determining the value of the phase-shift between the gyrometric signal and the image signal, and to apply this phase-shift value at the input of the rotation compensation means (136) to resynchronize the image signal onto the gyrometric signal before computation of the retimed image data.