Abstract:
There is provided a heart rate detection device including a sensing unit for sensing emergent light from subcutaneous tissues illuminated by a single light source of multiple light colors to output multiple light detection signals associated with multiple wavelengths. The heart rate detection device further includes a processor uses the multiple light detection signals associated with the multiple wavelengths to cancel motion artifact to obtain a clean heart rate signal.
Abstract:
A heart rate detection module including a PPG measuring device, a motion sensor and a processing unit is provided. The PPG measuring device is configured to detect a skin surface in a detection period to output a PPG signal. The motion sensor is configured to output an acceleration signal corresponding to the detection period. The processing unit is configured to respectively convert the PPG signal and the acceleration signal to first frequency domain information and second frequency domain information, determine a denoising parameter according to a maximum spectrum peak value of the second frequency domain information to denoise the first frequency domain information, and calculate a heart rate according to a maximum spectrum peak value of the denoised first frequency domain information.
Abstract:
An optical processing apparatus, a light source luminance adjustment method, and a non-transitory computer readable medium thereof are provided. The optical processing apparatus includes a light source unit, a processing unit, and an image sensing unit, wherein the processing unit is electrically connected to the light source unit and the image sensing unit. The light source unit provides a beam of light. The processing unit defines a frame rate, defines a plurality of time instants within a time interval, and sets the light source unit to a luminance value at each of the time instants. A length of the time interval is shorter than the reciprocal of the frame rate. The luminance values are different and are within a range. The image sensing unit captures an image by an exposure time length at each of the time instants, wherein the exposure time lengths are the same.
Abstract:
A displacement detection method includes the steps of: capturing a first frame and a second frame; selecting a first block with a predetermined size in the first frame and selecting a second block with the predetermined size in the second frame; determining a displacement according to the first block and the second block; comparing the displacement with at least one threshold; and adjusting the predetermined size according to a comparison result of comparing the displacement and the threshold. The present invention further provides a displacement detection apparatus.
Abstract:
There is provided a physiological detection device for detecting physiological signals via a skin surface and including a first light source, a second light source, a first light sensor, a second light sensor and a processor. The first light source emits light via an optical element that causes the first light sensor and the second light sensor to receive different percentages of light energy of the first light source. The first light sensor and the second light sensor receive the same percentage of light energy of the second light source. The processor adjusts emission intensity of the first light source according to an intensity difference between two light energies received by the first and second light sensors as well as an intensity variation of light energy received by the first light sensor to alleviate motion artifacts in the physiological signals.
Abstract:
There is provided a physiological detection device including a white light source, a molding and a pixel array. The white light source is configured to emit white light having a color temperature between 2800K and 3200K. The molding is formed upon the white light source and configured to constrain an emission angle of the white light between 60 and 80 degrees. The pixel array is covered by a filter layer having a passband between 570 nm and 620 nm configured to filter the white light.
Abstract:
A heart rate detection module including a PPG measuring device, a motion sensor and a processing unit is provided. The PPG measuring device is configured to detect a skin surface in a detection period to output a PPG signal. The motion sensor is configured to output an acceleration signal corresponding to the detection period. The processing unit is configured to respectively convert the PPG signal and the acceleration signal to first frequency domain information and second frequency domain information, determine a denoising parameter according to a maximum spectrum peak value of the second frequency domain information to denoise the first frequency domain information, and calculate a heart rate according to a maximum spectrum peak value of the denoised first frequency domain information.
Abstract:
A biofeedback control system and method includes monitoring a physiological condition of a user to generate a sensing signal including a physiological information of the user, extracting a physiological variation information from the physiological information to generate a biofeedback signal, and generating a control signal based on the physiological variation information for controlling scenes, scenarios, background music or audio-visual effects of a program or a game. By this way, the biofeedback control system and method can trace a user's mood to automatically adjust a video output or an audio output of an electronic system where a program is playing or a game is running to enhance amusement.
Abstract:
There is provided a treadmill capable of performing the fall detection. The treadmill includes a light sensor and a processor. The light sensor acquires an image frame toward an operation space. The processor performs the occupancy detection on the image frame using face detection and human detection. Upon not detecting the operation space being occupied by any user during a running state of the treadmill, the processor deactivates the treadmill and raises a fall alarm.
Abstract:
An optical processing apparatus, a light source luminance adjustment method, and a non-transitory computer readable medium thereof are provided. The optical processing apparatus includes a light source unit, a processing unit, and an image sensing unit, wherein the processing unit is electrically connected to the light source unit and the image sensing unit. The light source unit provides a beam of light. The processing unit defines a frame rate, defines a plurality of time instants within a time interval, and sets the light source unit to a luminance value at each of the time instants. A length of the time interval is shorter than the reciprocal of the frame rate. The luminance values are different and are within a range. The image sensing unit captures an image by an exposure time length at each of the time instants, wherein the exposure time lengths are the same.