Abstract:
The present disclosure relates to a zinc-based coated steel material having excellent corrosion resistance and spot weldability and, more particularly, to a zinc-based coated steel material plated with a multilayer zinc alloy, which has two or more layers, and having excellent corrosion resistance and spot weldability. A zinc-based coated steel material according to an aspect of the present disclosure includes: a base steel; and a multilayer zinc-based plating layer composed of two or more discriminated plating layers, in which the multilayer zinc-based plating layer may include Mg of 0.12˜0.64 percent by weight.
Abstract:
A conversion coating composition comprising 0.01 wt % to 0.2 wt % of phosphorous (P); 0.01 wt % to 0.2 wt % of magnesium (Mg); 0.005 wt % to 0.15 wt % of zirconium (Zr); 0.005 wt % to 0.15 wt % of titanium (Ti); 0.005 wt % to 0.15 wt % of vanadium (V); 0.05 wt % to 1 wt % of phenol resin; the balance of water and other unavoidable impurities is provided. A surface treated steel sheet comprising a base steel sheet; a zinc or zinc alloy plated layer formed on the base steel sheet; a blackening layer formed on the zinc or zinc alloy plated layer; and an organic and inorganic complex conversion coating layer formed on the blackening layer, wherein the organic and inorganic complex conversion coating layer may satisfy the weight ratio of P:Mg:Zr:Ti:V=1:0.045 to 2:0.035 to 1.5:0.035 to 1.3:0.035 to 1.5 (based on the weight of P) is also provided. A method for manufacturing a steel sheet treated with the conversion coating composition is also provided.
Abstract:
Provided are a single layer zinc alloy plated steel material and a fabrication method therefor, the single layer zinc alloy plated steel material comprising a base iron and a zinc alloy plating layer formed on the base iron, wherein the zinc alloy plating layer contains 13-24 wt % of Mg, and the adhesion amount of the zinc alloy plating layer is at most 40 g/m2 (excluding 0 g/m2).
Abstract:
Provided are a zinc alloy plated steel and a method for manufacturing same, the zinc alloy plated steel comprising: a base iron; a Zn plated layer formed on top of the base iron; and a Zn—Mg alloy layer formed on top of the Zn plated layer and obtained through mutual diffusion of Zn and Mg, wherein the ratio of the weight of Mg contained in the Zn—Mg alloy layer with respect to the total weight of the Zn plated layer and the Zn—Mg alloy layer is 0.13 to 0.24, and the sum of the adhesion quantity of the Zn layer and the Zn—Mg alloy layer is no more than 40 g/m2 (more than 0 g/m2).
Abstract:
The present invention provides a chromium-free coating composition having high blackening resistance and corrosion resistance, the composition comprising: 20 to 70 wt % of waterborne silane modified polyurethane; 0.5 to 5 wt % of a hardener; 0.5 to 5 wt % of a blackening inhibitor; 0.5 to 5 wt % of a corrosion inhibitor; and 0.5 to 5 wt % of a lubricant, with the balance being a solvent. The chromium-free coating composition has the effect of improving blackening resistance, corrosion resistance, alkali resistance, solvent resistance and fingerprint resistance of a steel sheet on which a coating layer comprising the composition is formed.
Abstract:
The present invention relates to a plated steel sheet for hot press forming, a hot-press forming member manufactured using the same, and a manufacturing method thereof. The plated steel sheet comprises: a base steel sheet and a composite plated layer that is formed on at least one surface of the base steel sheet, and has a Mn-based plated layer and an Al-based plated layer alternately formed therein, an Al-based plated layer being formed on the uppermost layer thereof, wherein the composite plated layer has a total thickness of 5 to 30 μm, and in this case, the Mn-based plated layer accounts for 5 to 60% of the total thickness.
Abstract:
Provided is a method for manufacturing a Zn—Mg alloy-coated steel sheet having high blackening resistance and coating adhesion. In one implementation, the method may include forming a Zn—Mg coating layer on a base steel sheet and performing a combustion chemical vapor deposition (CCVD) process to form an oxide film. The oxide film may include a metal oxide and the metal oxide may include silicon oxide (SiO2) and magnesium oxide (MgO). The base steel sheet may be maintained within a temperature range of 330° C. to 450° C. during the performing of the CCVD process.
Abstract:
Provided is a plated steel plate used for interior materials and exterior materials such as home appliances, construction materials, vehicles, etc., and a method for manufacturing same. The plated sheet plate includes: base steel; a Zn—Mg plating layer formed on the base steel; and a UV-curable film layer formed on the Zn—Mg plating layer, wherein a hairline pattern is formed on a surface of the Zn—Mg plating layer, and the Zn—Mg plating layer includes 8 to 27 weight % of Mg and a balance of Zn and inevitable impurities.
Abstract:
Provided is a multilayered zinc alloy plated steel material comprising a base iron and multilayered plated layers formed on the base iron, wherein each of the multilayered plated layers is any one of a Zn-plated layer, a Mg-plated layer, and a Zn—Mg alloy-plated layer, and the ratio of the weight of Mg contained in the multilayered plated layers is 0.13-0.24 on the basis of the total weight of the multilayered plated layers.
Abstract:
Provided is a multilayer zinc alloy plated steel material comprising a base steel material and multiple plating layers formed on the base steel material, wherein each of the multiple plating layers includes one of a Zn plating layer, a Mg plating layer, and a Zn—Mg alloy plating layer, and the ratio of the weight of Mg contained in the multiple plating layers to the total weight of the multiple plating layers is from 0.13 to 0.24.