Abstract:
According to the present invention, an organic light-emitting composite and a method of manufacturing the organic light-emitting composite are provided. According to exemplary embodiments, an organic light-emitting composite includes a polymer matrix; a first light-emitting material provided in the polymer matrix; and a second light-emitting material provided in the polymer matrix and obtained by oxidizing the first light-emitting material, wherein the second light-emitting material may have the same molecular weight as that of the first light emitting-material.
Abstract:
The disclosure describes a nanowire for an anode material of a lithium ion cell and a method of preparing the same. The nanowire includes silicon (Si) and germanium (Ge). The nanowire has a content of the silicon (Si) higher than a content of the germanium (Ge) at a surface thereof, and has the content of germanium (Ge) higher than the content of the silicon (Si) at an inner part thereof.
Abstract:
The disclosure describes a nanowire for an anode material of a lithium ion cell and a method of preparing the same. The nanowire includes silicon (Si) and germanium (Ge). The nanowire has a content of the silicon (Si) higher than a content of the germanium (Ge) at a surface thereof, and has the content of germanium (Ge) higher than the content of the silicon (Si) at an inner part thereof.
Abstract:
This disclosure relates to a method for preparing vertically grown nanostructures of C60 and conjugated molecules, including: forming a C60 film or a conjugated organic molecular film; and introducing the C60 film or conjugated organic molecular film and a solvent into an airtight container, and then conducting solvent vapor annealing. According to the preparation method, C60 molecules and conjugated molecules may be vertically grown under mild conditions by a simple process.