Abstract:
Systems and methods are provided for database or data file backup. The system may comprise one or more processors and a memory storing instructions that, when executed by the one or more processors, cause the system to identify a list of data files required for restoring the database or data files, create a backup comprising copies of a subset of the data files that are created or modified after a preceding backup, and back up the database, wherein the backup includes an identification to the preceding backup.
Abstract:
Embodiments of the present disclosure relate to a computer system and interactive user interfaces configured to enable efficient and rapid access to multiple different data sources simultaneously, and by an unskilled user. The unskilled user may provide simple and intuitive search terms to the system, and the system may thereby automatically query multiple related data sources of different types and present results to the user. Data sources in the system may be efficiently interrelated with one another by way of a mathematical graph in which nodes represent data sources and/or portions of data sources (for example, database tables), and edges represent relationships among the data sources and/or portions of data sources. For example, edges may indicate relationships between particular rows and/or columns of various tables. The table graph enables a compact and memory efficient storage of relationships among various disparate data sources.
Abstract:
Embodiments of the present disclosure relate to a computer system and interactive user interfaces configured to enable efficient and rapid access to multiple different data sources simultaneously, and by an unskilled user. The unskilled user may provide simple and intuitive search terms to the system, and the system may thereby automatically query multiple related data sources of different types and present results to the user. Data sources in the system may be efficiently interrelated with one another by way of a mathematical graph in which nodes represent data sources and/or portions of data sources (for example, database tables), and edges represent relationships among the data sources and/or portions of data sources. For example, edges may indicate relationships between particular rows and/or columns of various tables. The table graph enables a compact and memory efficient storage of relationships among various disparate data sources.
Abstract:
A computer-implemented method for generating a monitor for at least one software service from a monitor template, includes, in at least some aspects: providing a monitor template. Further, in certain instances, the method includes determining one or more endpoints included in code for a first software service of the at least one software service. In addition, in some aspects, the method includes generating a first monitor for the first software service code using the monitor template based at least upon a first endpoint of the one or more endpoints included in the first software service code.
Abstract:
Systems and methods are provided for database or data file backup. The system may comprise one or more processors and a memory storing instructions that, when executed by the one or more processors, cause the system to identify a list of data files required for restoring the database or data files, create a backup comprising copies of a subset of the data files that are created or modified after a preceding backup, and back up the database, wherein the backup includes an identification to the preceding backup.
Abstract:
Embodiments of the present disclosure relate to a computer system and interactive user interfaces configured to enable efficient and rapid access to multiple different data sources simultaneously, and by an unskilled user. The unskilled user may provide simple and intuitive search terms to the system, and the system may thereby automatically query multiple related data sources of different types and present results to the user. Data sources in the system may be efficiently interrelated with one another by way of a mathematical graph in which nodes represent data sources and/or portions of data sources (for example, database tables), and edges represent relationships among the data sources and/or portions of data sources. For example, edges may indicate relationships between particular rows and/or columns of various tables. The table graph enables a compact and memory efficient storage of relationships among various disparate data sources.
Abstract:
Systems and methods are provided for database or data file backup. The system may comprise one or more processors and a memory storing instructions that, when executed by the one or more processors, cause the system to identify a list of data files required for restoring the database or data files, create a backup comprising copies of a subset of the data files that are created or modified after a preceding backup, and back up the database, wherein the backup includes an identification to the preceding backup.
Abstract:
Systems and methods are provided for database or data file backup. The system may comprise one or more processors and a memory storing instructions that, when executed by the one or more processors, cause the system to identify a list of data files required for restoring the database or data files, create a backup comprising copies of a subset of the data files that are created or modified after a preceding backup, and back up the database, wherein the backup includes an identification to the preceding backup.
Abstract:
Embodiments of the present disclosure relate to a computer system and interactive user interfaces configured to enable efficient and rapid access to multiple different data sources simultaneously, and by an unskilled user. The unskilled user may provide simple and intuitive search terms to the system, and the system may thereby automatically query multiple related data sources of different types and present results to the user. Data sources in the system may be efficiently interrelated with one another by way of a mathematical graph in which nodes represent data sources and/or portions of data sources (for example, database tables), and edges represent relationships among the data sources and/or portions of data sources. For example, edges may indicate relationships between particular rows and/or columns of various tables. The table graph enables a compact and memory efficient storage of relationships among various disparate data sources.
Abstract:
Embodiments of the present disclosure relate to a computer system and interactive user interfaces configured to enable efficient and rapid access to multiple different data sources simultaneously, and by an unskilled user. The unskilled user may provide simple and intuitive search terms to the system, and the system may thereby automatically query multiple related data sources of different types and present results to the user. Data sources in the system may be efficiently interrelated with one another by way of a mathematical graph in which nodes represent data sources and/or portions of data sources (for example, database tables), and edges represent relationships among the data sources and/or portions of data sources. For example, edges may indicate relationships between particular rows and/or columns of various tables. The table graph enables a compact and memory efficient storage of relationships among various disparate data sources.