Abstract:
A wavelength converter comprises: phosphor particles; and a matrix that is located between the phosphor particles and comprises zinc oxide crystallites. Pores are included in at least one of the zinc oxide crystallites.
Abstract:
A light source includes a semiconductor light emitting device; and a wavelength converter. The wavelength converter includes: a substrate; a phosphor layer disposed on the substrate; and a light reflective layer disposed on the substrate so as to surround the phosphor layer. The phosphor layer includes phosphor particles and a first matrix material in which the phosphor particles are dispersed. The light reflective layer includes inorganic compound particles and a second matrix material in which the inorganic compound particles are dispersed. The inorganic compound particles have a refractive index higher than that of the first matrix material. The first matrix material has a refractive index higher than that of the phosphor particles. The phosphor particles have a refractive index higher than that of the second matrix material.
Abstract:
A aspect of the present disclosure provides a base material with a transparent conductive film on or above the base material. The transparent conductive film includes a conductive layer containing metal wires, and a protective layer being located on a side of the conductive layer and containing a resin and a particle, the side not opposing to the base material. The particle is soluble in an acidic etching solution, and the resin is resistant to the acidic etching solution.
Abstract:
A wavelength conversion member, comprises: a substrate; a first wavelength conversion layer on the substrate, the first wavelength conversion layer containing a first phosphor and a first matrix; and a second wavelength conversion layer containing a second phosphor, first inorganic particles, and a second matrix. The first phosphor and the second phosphor convert at least part of the excitation light incident on the second main surface into first light having longer wavelengths than the excitation light. The first light is emitted from the second main surface of the second wavelength conversion layer. A volume Vp1 of the first phosphor, a volume Vw1 of the first wavelength conversion layer, a volume Vp2 of the second phosphor, and a volume Vw2 of the second wavelength conversion layer satisfy Vp1/Vw1>Vp2/Vw2.
Abstract:
A base material with a transparent conductive film on or above the base material is provided. The transparent conductive film includes a conductive layer; and a protective layer being located on a side of the conductive layer and containing a first resin, the side not opposing to the base material. The transparent conductive film includes a conductive portion and a non-conductive portion in a plan view. The conductive layer contains no metal wires in the conductive portion or contains less metal wires per unit area in the non-conductive portion than the conductive layer contains the metal wires per unit area in the conductive portion. The protective layer contains a particle in the conductive portion, and includes an aperture penetrating the first resin in a thickness direction in the non-conductive portion. The particle is soluble in an acidic etching solution, and the first resin is resistant to the acidic etching solution.