Abstract:
An optical reflecting device includes a mirror part, a pair of joints, a pair of vibration parts, a plurality of driving parts, and a fixed part. Each of the joints has a first end connected to respective one the facing positions to each other on the mirror part and a second end opposite to the first end, and extends along a first axis. Each of the vibration parts has a central portion connected to the second end of respective one of the joints. A plurality of driving parts is disposed in each of the pair of vibration parts, and rotates the mirror part. Both ends of each of the pair of vibration parts are connected to the fixed part. The beam width defined as the length of each of the joints in a direction orthogonal to the first axis is greater than the beam width of each of the pair of vibration parts.
Abstract:
A light control system includes an optical reflection element and a controller. The optical reflection element includes: a reflector; and a first swing portion and a second swing portion disposed at respective one of positions sandwiching the reflector. Each of the first swing portion and the second swing portion includes: a first connection portion coupled to the reflector; a first vibration portion; a second vibration portion; a first drive portion; a second drive portion; and a second connection portion that connects the first and second vibration portions to a base. The controller causes the first and second drive portions of the first swing portion to vibrate in the same phase, and causes the first and second drive portions of the second swing portion to vibrate in the same phase but in the opposite phase to the first swing portion.
Abstract:
An actuator includes a frame, a driver portion having one end connected to an inside of the frame, a movable portion connected to another end of the driver portion, and an electrode provided at the movable portion. The driver portion vibrates the movable portion by being driven by a driving signal. The electrode receives a high-frequency signal higher than that of the driving signal. This actuator is driven at a high speed by a large deflection angle, and can prevent dust from adhering to the movable portion.
Abstract:
A piezoelectric drive element includes: a movable part; a pair of piezoelectric drive parts each connected at one end portion thereof to the movable part and configured to rotate the movable part about at least a rotation axis; and a fixing part to which end portions of the piezoelectric drive parts are connected. The pair of piezoelectric drive parts are aligned in a direction along the rotation axis with the movable part located therebetween, a width of the movable part is narrower than a width of each of the pair of piezoelectric drive parts in a plan view, and the fixing part is placed in a gap region that is outside the movable part and that is located between the pair of piezoelectric drive parts in a plan view.
Abstract:
An actuator includes a frame, a driver portion having one end connected to an inside of the frame, a movable portion connected to another end of the driver portion, and an electrode provided at the movable portion. The driver portion vibrates the movable portion by being driven by a driving signal. The electrode receives a high-frequency signal higher than that of the driving signal. This actuator is driven at a high speed by a large deflection angle, and can prevent dust from adhering to the movable portion.
Abstract:
A reflective optical element includes a reflector configured to reflect light, a first connection part connected with the reflector, first and second transmission parts connected with of the first connection part, first and second vibrator parts connected with respective base ends of the first and second transmission parts, first and second driver parts connected with respective head ends of the first and second vibrator parts, a base, and a second connection part connecting the first and second vibrator parts vibratably with the base.
Abstract:
An optical reflecting device includes a fixed frame, a pair of first oscillation parts, a movable frame, a pair of second oscillation parts, and a mirror part. One-side ends of the first oscillation parts are connected to the inside of the fixed frame. The movable frame is connected to and held by the other-side ends of the pair of first oscillation parts to be pivotable. One-side ends of the pair of second oscillation parts are connected to the inside of the movable frame and the pair of second oscillation parts are disposed to be substantially perpendicular to the pair of first oscillation parts. The mirror part is connected to and held by the other-side ends of the pair of second oscillation parts to be pivotable. The first oscillation parts have a meandering shape in which a plurality of straight portions and a plurality of folded portions are formed, and a stepped structure portion is provided in part of the folded portion.