Method for preparing a polymer membrane for a polymer electrolyte water electrolyser

    公开(公告)号:US12234566B2

    公开(公告)日:2025-02-25

    申请号:US17612018

    申请日:2020-05-13

    Abstract: A method of preparing an ionomer of an ion exchange membrane with a recombination catalyst to prevent gas crossover of species, such as hydrogen and/or oxygen, to anodic and cathodic cell compartments of an electrochemical cell. An ionomer of an ion exchange membrane is prepared with a recombination catalyst. The ionomer is a proton or anion exchange polymer and the recombination catalyst, selected from the precious metals group, is provided in ionic form in a liquid metal salt solution. The ion exchange membrane is immersed into the liquid metal salt solution to exchange ionic ionomer ports with the ionic form of the recombination catalyst. The membrane is then assembled in the electrochemical cell and the ionic form of the recombination catalyst is at least partly reduced to metallic form by forcing hydrogen to permeate through the ionomer of the ion exchange membrane.

    Bilayer electrolyte membrane and a redox flow battery comprising a bilayer electrolyte membrane

    公开(公告)号:US11611084B2

    公开(公告)日:2023-03-21

    申请号:US16962392

    申请日:2018-12-05

    Abstract: An electrolyte membrane and method for generating the membrane provide a resistance as low as possible to minimize ohmic losses. The membrane has a low permeability for redox-active species. If redox-active species still cross the membrane, this transport is balanced during charge and discharge preventing a net vanadium flux and associated capacity fading. The membrane is mechanically robust, chemically stable in electrolyte solution, and low cost. A family of ion exchange membranes including a bilayer architecture achieves these requirements. The bilayer membrane includes two polymers, i) a polymer including N-heterocycles with electron lone pairs acting as proton acceptor sites and ii) a mechanically robust polymer acting as a support, which can be a dense cation exchange membrane or porous support layer. This bilayer architecture permits a very thin polymer film on a supporting polymer to minimize ohmic resistance and tune electrolyte transport properties of the membrane.

    Amphoteric electrolyte membrane with selective and balanced ion transport properties and a redox flow battery comprising an electrolyte membrane

    公开(公告)号:US11527764B2

    公开(公告)日:2022-12-13

    申请号:US17059661

    申请日:2019-05-23

    Abstract: A membrane with high ion selectivity, balancing influence on vanadium transport in all-vanadium redox-flow environment, high physicochemical stability and potentially low cost is an amphoteric ion exchange membrane with defined ratio of anion and cation exchange capacity, in particular for redox flow batteries. The membrane includes a mechanically robust and chemically resistant base polymer film (matrix), ion exchange groups covalently bound to the polymer matrix, being a mixture of anion and cation exchange groups, a comonomer including two anion exchange groups per molecule to yield a ratio of anion exchange groups to cation exchange groups of 1.5-4 (50-300% excess of anion exchange groups over cation exchange groups) to balance transport of positively charged redox-active ions, a quaternary bonded alpha-C atom in comonomers to protect the resulting polymer sterically against chemical degradation. Optionally, additional functional constituents, such as crosslinkers and/or antioxidants are provided.

    METHOD FOR PREPARING A POLYMER MEMBRANE FOR A POLYMER ELECTROLYTE WATER ELECTROLYSER

    公开(公告)号:US20220251721A1

    公开(公告)日:2022-08-11

    申请号:US17612018

    申请日:2020-05-13

    Abstract: A method of preparing an ionomer of an ion exchange membrane with a recombination catalyst to prevent gas crossover of species, such as hydrogen and/or oxygen, to anodic and cathodic cell compartments of an electrochemical cell. An ionomer of an ion exchange membrane is prepared with a recombination catalyst. The ionomer is a proton or anion exchange polymer and the recombination catalyst, selected from the precious metals group, is provided in ionic form in a liquid metal salt solution. The ion exchange membrane is immersed into the liquid metal salt solution to exchange ionic ionomer ports with the ionic form of the recombination catalyst. The membrane is then assembled in the electrochemical cell and the ionic form of the recombination catalyst is at least partly reduced to metallic form by forcing hydrogen to permeate through the ionomer of the ion exchange membrane.

Patent Agency Ranking