Abstract:
In an embodiment, a phase change non-volatile memory includes a number of memory cells. The memory cells include a phase change material which may transition between two memory states. The phase change material has different electrical properties in different states. The memory cells may be electrically addressable and include a transistor in each cell to electrically read and write data to the cell. An energy beam may be used to pre-program the device by heating selected memory cells, and consequently changing the state of the phase change material.
Abstract:
In an embodiment, a phase change non-volatile memory includes a number of memory cells. The memory cells include a phase change material which may transition between two memory states. The phase change material has different electrical properties in different states. The memory cells may be electrically addressable and include a transistor in each cell to electrically read and write data to the cell. An energy beam may be used to pre-program the device by heating selected memory cells, and consequently changing the state of the phase change material.
Abstract:
In an embodiment, a phase change non-volatile memory includes a number of memory cells. The memory cells include a phase change material which may transition between two memory states. The phase change material has different electrical properties in different states. The memory cells may be electrically addressable and include a transistor in each cell to electrically read and write data to the cell. An energy beam may be used to pre-program the device by heating selected memory cells, and consequently changing the state of the phase change material.
Abstract:
Briefly, in accordance with an embodiment of the invention, a method to store information is provided, wherein the method includes generating a storage parameter to store information, wherein the storage parameter indicates use of the information by a software process and transferring the information to one of at least two memory devices based at least in part on the storage parameter and on a characteristic of the two memory devices.
Abstract:
A device, that includes nonvolatile memory, a peripheral antenna, and a peripheral radio frequency (RF) receiver, is configured to receive a peripheral RF signal containing programming and to write the programming to the nonvolatile memory. Examples of such a device include, a cellular phone, a personal digital assistant (PDA), and a desktop personal computer. The programming received by the device can be used to update a boot-up algorithm or an application stored in the nonvolatile memory of the device. In one embodiment, a system programs a plurality of devices via a plurality of peripheral RF signals particular to each device. A computer system has stored a plurality of RF data module arrays to generate the plurality of peripheral RF signals.
Abstract:
In an embodiment, a phase change non-volatile memory includes a number of memory cells. The memory cells include a phase change material which may transition between two memory state. The transition time to achieve on memory state is longer than the transition time to achieve another memory state. All cells in the memory device may initially be set to the state with the longer transition time. An initial programming operation may have a reduced programming time because all state changes occur at the shorter transition time.
Abstract:
An electronic assembly comprising an electrical device, an array of solder balls connected to the electrical device, and a sheet adjacent the electrical device. The sheet has a plurality of holes formed therethrough and a plurality of electrical lines formed thereon. Each electrical line has a first contact portion on a first surface of the sheet, a probe contact at a location away from the electrical device, and a trace interconnecting the probe contact with the first contact portion. Each ball extends through a respective hole in the sheet. Each ball is also in contact with a respective first contact portion of a respective electrical line.