Abstract:
An apparatus for extracting organic compounds from plant materials using subcritical or supercritical carbon dioxide is described. The apparatus has a sealable pressure chamber into which carbon dioxide dry ice and the plant materials are inserted, the pressure chamber, once sealed, self-pressurizing as the container and contents are warmed to a chosen temperature, converting the solid CO2 to liquid, or to a super-critical fluid as the temperature and pressure are raised above the Critical Point. The chamber can be rotated when subcritical CO2 liquid is employed to improve mixing between the liquid and the plant material. After a suitable extraction time, the carbon dioxide solvent containing the extracted material is directed into a separator such that the carbon dioxide and extracted material can be effectively separated, thereby avoiding significant quantities of viscous and waxy extracted materials remaining in the chamber and valves after the carbon dioxide solvent is warmed and allowed to exit the chamber.
Abstract:
Secret values used in a multi-server authentication scheme are updated. Information is authenticated in a system comprising a plurality of processing devices each adaptable for communication with one or more other devices. The information is authenticated by generating at least first and second shares of a first password associated with a first device (such as a client device); storing the first and second shares in respective second and third devices of the plurality of devices; updating the first and second shares using a personalized proactivization value; assigning a version number to the updated first and second shares; and upon submission of additional information associated with the first device to at least one of the second and third devices, the second and third devices utilizing the respective updated first and second shares for a given version number to collectively determine a correspondence of the additional information with the first password.
Abstract:
A method of testing the through cut of a pipeline comprising at least the steps of: (a) transmitting an electromagnetic signal through the pipeline; (b) monitoring any reflected signal(s); and (c) interpreting the or each reflected signal to test for the through cut of the pipeline. In this way, a non-invasive electromagnetic signal can be passed through, along, across or otherwise within the pipeline, and any reflected signal(s) can be interpreted and analysed based on one or more characteristics of the received signal(s) to ascertain the change in the conductivity of the pipeline due to the cutting thereof, in particular when or whether the cutting of the pipeline is complete or has been completed such that there is a through cut.
Abstract:
A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c). solutionizing the cast copper-base alloy at a temperature and for a time effective to substantially form a single phase alloy; (d). first age annealing the alloy at a temperature and for a time effective to precipitate an amount of a second phase effective to form a multi-phase alloy having silicides; (e). cold working the multi-phase alloy to effect a second reduction in cross-sectional area; and (f). second age annealing the multiphase alloy at a temperature and for a time effective to precipitate additional silicides thereby raising conductivity, wherein the second age annealing temperature is less than the first age annealing temperature.
Abstract:
Apparatus for supporting a scanner head, the apparatus comprising: a carrier assembly; a bogey assembly; and a scanner head assembly, comprising a mounting for holding a scanner head; wherein the scanner head assembly and the bogey assembly are both mounted on spring bearings on the carrier assembly such that they can both move in a vertical direction, and the scanner head assembly comprises at least two collinear vertical bearings which restrict movement of the scanner head assembly to vertical movement substantially perpendicular to a document path, and the bogey assembly comprises two laterally spaced bearings which allow rotational movement of the bogey assembly about the scanner head mounting.
Abstract:
An industrial waste stream recycling method for recovery of high purity zinc oxide products and other chemical and metal values from industrial waste streams containing zinc compounds by leaching the waste stream with a solution of 30% or greater by weight ammonium chloride, resulting in a first product solution and undissolved materials; adding zinc metal to the first product solution, whereby zinc-displaceable metal ions contained in the first product solution are displaced by the zinc metal and precipitate out of the first product solution as metals, leaving a second product solution; and diluting the second product solution with water, resulting in the precipitation of zinc oxide.
Abstract:
A method for reducing the formation of Zn(NH4)4Cl2 from ZnO/NH4Cl solutions formed during an industrial waste stream recycling method useful for the recovery of high purity zinc oxide products and other chemical and metal values from industrial waste streams.
Abstract:
An industrial waste stream recycling method for recovery of high purity zinc oxide products and other chemical and metal values from industrial waste streams containing zinc compounds by leaching the waste stream with a solution of 30% or greater by weight ammonium chloride, resulting in a first product solution and undissolved materials; adding zinc metal to the first product solution, whereby zinc-displaceable metal ions contained in the first product solution are displaced by the zinc metal and precipitate out of the first product solution as metals, leaving a second product solution; and diluting the second product solution with water, resulting in the precipitation of zinc oxide.
Abstract:
A method for the recovery of high purity zinc oxide products, and optionally iron-carbon feedstocks, from industrial waste streams containing zinc oxide and/or iron. The waste streams preliminarily can be treated by adding carbon and an ammonium chloride solution, separating any undissolved components from the solution, displacing undesired metal ions from the solution using zinc metal, treating the solution to remove therefrom zinc compounds, and further treating the zinc compounds and the undissolved components, as necessary, resulting in the zinc products and the optional iron-carbon feedbacks. Once the zinc oxide has been recovered, the purification process is used to further purify the zinc oxide to obtain zinc oxide which is at least 99.8% pure and which hsa predeterminable purity and particle characteristics.
Abstract:
Secret values used in a multi-server authentication scheme are updated. Information is authenticated in a system comprising a plurality of processing devices each adaptable for communication with one or more other devices. The information is authenticated by generating at least first and second shares of a first password associated with a first device (such as a client device); storing the first and second shares in respective second and third devices (such as authentication server devices); updating the first and second shares using a secret value T; assigning a version number to the updated first and second shares; and upon submission of additional information associated with the first device to at least one of the second and third devices, the second and third devices utilizing the respective updated first and second shares for a given version number to collectively determine a correspondence of the additional information with the first password.