Abstract:
A liquid filtering system and methods for filtering are disclosed. One embodiment of the system includes a filtering apparatus having a receiving receptacle coupled with an adapter. The adapter has an adapter port for receiving a vacuum and an interface for coupling with an output receptacle that receives filtered liquid from the filtering apparatus. The adapter is between the receiving receptacle and output receptacle when the output receptacle is coupled with the adapter interface. The system also includes a base having a substantially rigid housing containing an internal vacuum channel terminating at a base vacuum delivery port. The adapter is couplable with the base to connect the adapter port to the base vacuum delivery port.
Abstract:
A vacuum filtration apparatus for detecting microorganisms and particulates in liquid samples. The apparatus includes a base, an absorbent pad, a filter means, a funnel and a lid. The funnel is releasably attached to the base, and may contain an integral flexible seal for releasably sealing the filter means to the base. The outer wall of the lid may be segmented to make it flexible, this flexibility allows it to be releasably attached to the funnel or the base. The apparatus is designed so that any funnel will fit any base, and any lid will fit any base or any funnel when all parts are manufactured to normal tolerances. The apparatus may contain a means to keep the filter means wrinkle free in both the dry and wet states.
Abstract:
Biological fluid filtration systems including biological fluid filtration devices capable of filtering blood or blood products, including the removal of leukocytes from the blood or blood product. Each system includes a means to automatically drain the biological fluid upstream of the biological fluid filtration media disposed in the biological fluid filtration device. Both single sided and double sided biological fluid filtration devices are disclosed, including double sided biological fluid filtration devices with a solid partition wall with a first independent fluid flow path on one side of the partition wall, and a second independent fluid flow path on the other side of the partition wall. Draining means include vent filtration devices, diaphragm draining devices, and biological fluid filtration devices that include an integral diaphragm. The biological fluid filtration devices include low hold-up volume filter underdrains that purge in excess of 95% of the initial air in the device before liquid begins to flow from the outlet, thereby allowing the devices to be used in bed side applications. Variable surface area biological fluid filtration devices are disclosed that further reduce hold-up volume.
Abstract:
A flow diverter, vacuum control and tilting of the liquid filtering system are used alternatively or in conjunction to reduce foam production in a filtered liquid sample. A liquid filtering system includes an upper sample reservoir, a filter and a lower storage bottle. A vacuum is applied below the sample filter to draw sample liquid through the sample filter into the storage bottle. A flow diverter may be used to direct flow of the filtered liquid sample onto a sidewall of the storage bottle or guide flow to a bottom of the storage bottle. The vacuum may be regulated to reduce foaming. The liquid filtering system may be tilted to direct fluid to the sidewall of the lower storage bottle and reduce foaming.