Abstract:
A semiconductor package including an insulating layer, a chip, a thermal interface material, a heat-dissipating cover and a re-distribution layer is provided. The insulating layer has an accommodating opening. The chip is disposed in the accommodating opening. The chip has an active surface, a back surface opposite to the active surface and a side surface connected to the active surface and the back surface. The thermal interface material is filled in the accommodating opening for at least encapsulating the side surface of the chip and exposing the active surface. The re-distribution layer and the heat-dissipating cover are disposed on two side of the insulating layer respectively. The heat-dissipating cover is thermally coupled to the chip through the thermal interface material. The re-distribution layer directly covers the insulating layer, the active surface of the chip and the thermal interface material, and the re-distribution layer is electrically connected to the chip.
Abstract:
A semiconductor package including an insulating layer, a chip, a thermal interface material, a heat-dissipating cover and a re-distribution layer is provided. The insulating layer has an accommodating opening. The chip is disposed in the accommodating opening. The chip has an active surface, a back surface opposite to the active surface and a side surface connected to the active surface and the back surface. The thermal interface material is filled in the accommodating opening for at least encapsulating the side surface of the chip and exposing the active surface. The re-distribution layer and the heat-dissipating cover are disposed on two side of the insulating layer respectively. The heat-dissipating cover is thermally coupled to the chip through the thermal interface material. The re-distribution layer covers the active surface of the chip and the thermal interface material, and the re-distribution layer is electrically connected to the chip.
Abstract:
A semiconductor package including an insulating layer, a chip, a thermal interface material, a heat-dissipating cover and a re-distribution layer is provided. The insulating layer has an accommodating opening. The chip is disposed in the accommodating opening. The chip has an active surface, a back surface opposite to the active surface and a side surface connected to the active surface and the back surface. The thermal interface material is filled in the accommodating opening for at least encapsulating the side surface of the chip and exposing the active surface. The re-distribution layer and the heat-dissipating cover are disposed on two side of the insulating layer respectively. The heat-dissipating cover is thermally coupled to the chip through the thermal interface material. The re-distribution layer covers the active surface of the chip and the thermal interface material, and the re-distribution layer is electrically connected to the chip.
Abstract:
Disclosed is a MPS-C2 (Metal Post Soldering Chip Connection) semiconductor device having shorter supporting posts. Bonding pads are reentrant from a wafer-level packaging (WLP) layer formed on the active surface. A patterned UBM metal layer includes a plurality of UBM pads disposed on the bonding pads and at least a UBM island disposed on the WLP layer. The island area of the UBM island on the WLP layer is at least four times larger than the unit area of the UBM pads. A plurality of I/O pillars are one-to-one disposed on the UBM pads by plating and a plurality of supporting pillars are many-to-one disposed on the UBM island by one plating process. The unit footprint of the supporting pillars on the UBM island is smaller than the unit footprint of the I/O pillars on the UBM pads so as to compensate the height difference between the top jointing surfaces of the supporting pillars and the I/O pillars.
Abstract:
Disclosed is a chip scale package of image sensor having a dam combination, comprising an image sensor chip, a dam combination, a transparent lid disposed on the dam combination, and a plurality of external terminals disposed on the backside of the chip. An image sensing area is formed on the active surface of the image sensor chip. A dam combination consists essentially of at least two dam parts and has an image sensing window. The peripheries of the image sensor window are formed by a pre-formed dam part and are adjacent to the image sensing area with horizontal spacing not greater than 200 μm. There is a combination interface between the two dam parts. The combination interface and the post-formed dam part are far away from the image sensing area than the pre-formed dam part to keep residues caused by the disposition of the pre-formed dam part to be away from the 200 μm exclusive region around the image sensing area.