CELLULOSE NANOCRYSTAL POWDER AND PREPARATION METHOD AND USE THEREOF

    公开(公告)号:US20230076982A1

    公开(公告)日:2023-03-09

    申请号:US18047314

    申请日:2022-10-18

    Abstract: A preparation method includes 1) dispersing cellulose nanocrystal in water and adjusting pH to 7; 2) adding carboxylate to the aqueous dispersion of the step 1), and stirring until uniform; and 3) adding a monomer and a ceric ammonium nitrate initiator to the system of the step 2), reacting for 0.5-3 h to obtain a precipitate, and subjecting the precipitate to suction filtration, washing, and drying to obtain the cellulose nanocrystal powder. By adding a small amount of carboxylate into a cellulose nanocrystal graft polymer modification system initiated by ceric ammonium nitrate, hydrolysis of cerium ions can be inhibited through complexation of the carboxylate to the cerium ions which play an initiating role in ceric ammonium nitrate, so that ceric ammonium nitrate can initiate the polymerization reaction under acid-free conditions, thereby achieving polymerization of polyvinyl acetate monomer on the surface of cellulose nanocrystals.

    PREPARATION METHOD OF SOLID ELECTROLYTE
    2.
    发明公开

    公开(公告)号:US20230155172A1

    公开(公告)日:2023-05-18

    申请号:US18150114

    申请日:2023-01-04

    Abstract: The present disclosure belongs to the field of energy materials, and relates to a preparation method of a solid electrolyte, in particular to a method for forming a membrane by using an electrolyte to activate a porous powder material prepared by in-situ polymerization of a polymer on the surfaces of cellulose nanocrystals, and then hot-pressing. According to the technical solution of the present disclosure, cellulose nanocrystals are used as templates, the powder material with a porous structure is prepared by in-situ polymerization growth of the polymer on the surfaces of the cellulose nanocrystals, a small amount of electrolyte is used to activate the powder, and the solid electrolyte is prepared by hot-pressing membrane formation. The solid electrolyte prepared by the present disclosure has excellent electrochemical performance and mechanical performance, and a broad application prospect.

Patent Agency Ranking