Abstract:
An architectural covering is provided. The architectural covering includes: shade material; the shade material operatively connected to a motor unit such that movement of the motor unit causes movement of the shade material; the motor unit comprising a DC motor and a shaft connected to the DC motor; a power supply unit electrically connected to the motor unit; a controller unit electrically connected to the motor unit, the controller unit having a microprocessor; and a rotation detector configured to detect rotation of the motor unit and upon detection of rotation of the motor unit transmit a signal to the microprocessor, wherein the microprocessor of the controller unit is configured to power an encoder unit in response to determination of manual movement of the shade material. A motor and control unit for an architectural covering may be provided.
Abstract:
A roll shade system is disclosed. The roll shade system includes a motor configured to remain stationary during operation of the motor, a support shaft supporting the motor wherein the support shaft is configured to remain stationary during operation of the motor, and a roll shade tube configured to be rotatable about the motor and the support shaft during operation of the motor. The roll shade system further includes stationary components including a wiring connector, an input wiring system, a bearing, an antenna, a coaxial cable, a motor controller, a counterbalance spring. The roll shade system also includes rotatable components including a bearing housing and one or more O-rings.
Abstract:
A wirelessly controllable, motorized and battery powered drapery apparatus is presented having a rotatable drive element having a guide structure in its surface. The drapery apparatus includes brackets that house conventional batteries which power the apparatus. The brackets connect to a motor assembly which houses a motor and a motor controller. The rotatable drive element includes at least one key feature in its hollow interior. The guide structure is indexed to the key feature such that two rotatable drive elements can be connected together in such a manner that the guide structure is aligned on the two rotatable drive elements ensuring that the shade material opens and closes evenly.
Abstract:
An architectural covering is presented having a rotatable drive element having a guide structure and a plurality of idler attachment elements and a drive element positioned over the rotatable drive element. The rotatable drive element is connected to a wall, ceiling or other structure by brackets. In one arrangement a drive shaft having at least one bearing is then attached to the brackets such that the rotatable drive elements rotate upon the bearings. This arrangement provides an efficient, simple and convenient manner of attaching a rotatable drive element to brackets for mounting.
Abstract:
A roll shade system is disclosed. The roll shade system includes a motor configured to remain stationary during operation of the motor, a support shaft supporting the motor wherein the support shaft is configured to remain stationary during operation of the motor, and a roll shade tube configured to be rotatable about the motor and the support shaft during operation of the motor. The roll shade system further includes stationary components including a wiring connector, an input wiring system, a bearing, an antenna, a coaxial cable, a motor controller, a counterbalance spring. The roll shade system also includes rotatable components including a bearing housing and one or more O-rings.
Abstract:
A motorizable tilt shade system includes a header system where the header system includes an integral header attachment connection. At least one cord spool is provided within the header system and is connected with at least one suspension cord. A shade is suspended from the at least one suspension cord and a tilt cord pulley is connected with the at least one cord spool. A tilt cord is connected with the tilt cord pulley and with the shade such that the tilt cord and tilt cord pulley cooperate to tilt the shade. A drive shaft receiver is connected with the tilt cord pulley such that movement of the drive shaft receiver moves the tilt cord pulley. A counterbalance assembly including a negative gradient spring is connected to the drive shaft thereby providing an approximately constant tension on the tilt cord pulley.
Abstract:
An architectural covering is provided. The architectural covering includes: shade material; the shade material operatively connected to a motor unit such that movement of the motor unit causes movement of the shade material; the motor unit comprising a DC motor and a shaft connected to the DC motor; a power supply unit electrically connected to the motor unit; a controller unit electrically connected to the motor unit, the controller unit having a microprocessor; and a rotation detector configured to detect rotation of the motor unit and upon detection of rotation of the motor unit transmit a signal to the microprocessor, wherein the microprocessor of the controller unit is configured to power an encoder unit in response to determination of manual movement of the shade material. A motor and control unit for an architectural covering may be provided.