Abstract:
This disclosure provides systems, methods and apparatus for light-guiding layers including light-turning features with multiple reflective surfaces oriented at different angles to the light-guiding layer. In one aspect, the multiple reflective surfaces may be located on each individual light-turning feature, while in another aspect, the multiple reflective surfaces may be located on separate light-turning features. The use of multiple reflective surfaces oriented at different angles can improve the efficiency and appearance of a frontlight system using such a light-guiding layer.
Abstract:
This disclosure provides systems, methods and apparatus for reducing leakage in a driver circuit. In one aspect, the driver circuit may operate in a scanning time and an idle time. The driver circuit may update display elements during the scanning time. During the idle time, inputs to the driver circuit may be configured to be floating to reduce leakage.
Abstract:
This disclosure provides systems, methods and apparatus for light-guiding layers including asymmetrical light-turning features. In one aspect, the asymmetrical light-turning features may include a leading edge oriented at an angle which turns light out of the light-guiding layer, and a near-vertical trailing edge which reduces light leakage from the light-guiding layer. In another aspect, the asymmetrical light-turning features of the light-guiding layer may be oriented in the same or similar direction, and may be distributed with decreasing density adjacent a light source to provide more even illumination.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for applying field-sequential color (FSC) methods to displays that include single-mirror interferometric modulators (IMODs), which may be multi-state IMODs or analog IMODs. In one aspect, grayscale levels may be provided by varying a mirror/absorber gap height between black and white states. In other implementations, grayscale levels may be obtained by varying the gap height between the black state and second-order color peaks.
Abstract:
Provided herein are methods of depositing p-type metal oxide thin films by atomic layer deposition (ALD). Also provided are p-type metal oxide thin films and TFTs including p-type metal oxide channels. In some implementations, the p-type metal oxide thin films have a metal and oxygen vacancy defect density of less than 1019/cm3. The p-type metal oxide thin films may be electrically active throughout the entire thicknesses of the thin films.
Abstract:
This disclosure provides systems, methods and apparatus for enhancing the brightness and/or contrast ratio of display devices. In one aspect, the display devices can include an annular diffuser that is configured to scatter light into a ring shaped region. The annular diffuser can include a plurality of axicon lenses or holographic features. The reflective display can include an annular diffuser to shift the direction along which most of the modulated light is scattered away from the direction along which light is specularly reflected by the display devices to reduce specular glare and enhance brightness and/or contrast ratio.
Abstract:
This disclosure provides systems, methods and apparatus related to an electromechanical display device. In one aspect, an analog interferometric modulator includes a reflective display pixel having a reflector, and a movable first absorbing layer positionable at a distance d1 from the reflector, the first absorbing layer and the reflector defining a first gap therebetween. The apparatus also includes a second absorbing layer disposed at a distance d2 from the first absorbing layer, the first absorbing layer disposed between the second absorbing layer and the reflector, the second absorbing layer and the first absorbing layer defining a second gap therebetween. In addition, at least two of the reflector, the first absorbing layer and second absorbing layer are movable to synchronously either increase or decrease the thickness dimension of the first gap and the second gap.
Abstract:
A light guide may include a light guide core, light-extracting elements and cladding layers having lower refractive indices than that of the light guide core. The light guide may be a component of a front light system for a display. The display may be a reflective display, such as a reflective liquid crystal display (LCD). One cladding layer may include color filters for the display and may be disposed between the light guide and the display. The front light system may include a light source system capable of providing light (which may be polarized) to the light guide. The light-extracting elements may be capable of extracting light from the light guide and providing extracted light to the display, via the color filters. The light-extracting elements may include electrodes, such as electrodes for a touch sensor system.
Abstract:
This disclosure provides systems, methods and apparatus for an electromechanical systems reflective display device. In one aspect, an electromechanical systems display device includes a reflective layer and an absorber layer. The absorber layer is spaced apart from the reflective layer to define a cavity between the absorber layer and the reflective layer. The absorber layer is capable of transmitting light into the cavity, absorbing light, and reflecting light, and includes a metal layer. A plurality of matching layers are on a surface of the absorber layer facing away from the cavity, the plurality of matching layers including a first matching layer disposed on the absorber layer and a second matching layer disposed on the first matching layer.
Abstract:
This disclosure provides systems, methods, and apparatus for an analog or multistate electromechanical systems display devices including movable absorber together with a movable reflective layers. In one aspect, an electromechanical systems display device may include a movable reflector assembly and a movable absorber assembly. The absorber assembly may be disposed between the reflector assembly and a substrate. The absorber assembly may be configured to move to an absorber white state position proximate the reflector assembly and defining a first gap when the reflector assembly is in a reflector white/black position. The absorber assembly may be configured to move to a closed position closer to the substrate, defining a second gap, when the reflector assembly is in the reflector white/black position. The reflector assembly may be configured to move from the reflector white/black position to increase a height of the second gap when the absorber assembly is in the closed position.