Abstract:
The invention provides systems, methods, and devices relating to the provision of system-wide coordinated control voltage regulation support in power transmission and distribution networks using multiple inverter based power generation facilities, which are coupled to the power transmission and distribution networks for minimizing transmission and distribution line losses. The invention uses a novel control method of inverter based Distributed Generators as Static Synchronous Compensator (STATCOM) in a way that provides a dynamic voltage regulation/control with the inverter capacity remaining after real power generation, thereby decreasing system line losses.
Abstract:
The invention provides systems, methods, and devices relating to the provision of system-wide coordinated control voltage regulation support in power transmission and distribution networks using multiple inverter based power generation facilities, which are coupled to the power transmission and distribution networks for minimizing transmission and distribution line losses. The invention uses a novel control method of inverter based Distributed Generators as Static Synchronous Compensator (STATCOM) in a way that provides a dynamic voltage regulation/control with the inverter capacity remaining after real power generation, thereby decreasing system line losses.
Abstract:
Systems, methods, and devices relating to operating a power generation facility to contribute to the stability of the power transmission system. A controller operates on the power generation facility to modulate real power or reactive power or both in a decoupled manner to contribute to the stability of the power transmission system. Real power produced by the power generation facility can be increased or decreased between zero and the maximum real power available from the PV solar panels, as required by the power system. Reactive power from the power generation facility can be exchanged (injected or absorbed) and both increased or decreased as required by the power transmission system. For solar farms, the solar panels can be connected or disconnected, or operated at non-optimal power production to add or subtract real or reactive power to the power transmission system.
Abstract:
The invention provides systems, methods, and devices relating to the provision of system-wide coordinated control voltage regulation support in power transmission and distribution networks using multiple inverter based power generation or absorption facilities, which are coupled to the power transmission and distribution networks for minimizing transmission and distribution line losses and for performing Conservation Voltage Reduction. The invention uses a novel control method of inverter based Distributed Generators as Static Synchronous Compensator (STATCOM) in a way that provides a dynamic voltage regulation/control with the inverter capacity remaining after real power generation or absorption, thereby decreasing system line losses and performing Conservation Voltage Reduction.
Abstract:
The invention provides a method and system for operating a solar farm inverter as a Flexible AC Transmission System (FACTS) device—a STATCOM—for voltage control. The solar farm inverter can provide voltage regulation, damping enhancement, stability improvement and other benefits provided by FACTS devices. In one embodiment, the solar farm operating as a STATCOM at night is employed to increase the connectivity of neighboring wind farms that produce peak power at night due to high winds, but are unable to connect due to voltage regulation issues. The present invention can also operate during the day because there remains inverter capacity after real power export by the solar farm. Additional auxiliary controllers are incorporated in the solar farm inverter to enhance damping and stability, and provide other benefits provided by FACTS devices.
Abstract:
The invention provides a method and system for operating an inverter based distributed power generation source with energy storage system, as a Flexible AC Transmission System (FACTS) device—a STATCOM. The inverter based distributed power generation source can provide reactive power compensation, voltage regulation, damping enhancement, stability improvement and other benefits provided by FACTS devices. These STATCOM functions are provided when the said energy storage based distributed power generation source is doing at least one of: i) not exchanging active power with said power grid system, or ii) exchanging active power less than a maximum inverter capacity with said power grid system. The present invention thus provides a technological improvement that opens up a new set of applications and potential revenue earning opportunities for energy storage based distributed power generation sources other than simply from exchanging (injecting or absorbing) active power.
Abstract:
The invention provides systems, methods, and devices relating to the provision of system-wide coordinated control voltage regulation support in power transmission and distribution networks using multiple inverter based power generation or absorption facilities, which are coupled to the power transmission and distribution networks for minimizing transmission and distribution line losses and for performing Conservation Voltage Reduction. The invention uses a novel control method of inverter based Distributed Generators as Static Synchronous Compensator (STATCOM) in a way that provides a dynamic voltage regulation/control with the inverter capacity remaining after real power generation or absorption, thereby decreasing system line losses and performing Conservation Voltage Reduction.
Abstract:
Systems, methods, and devices relating to fault detection and short circuit current management support in power transmission and distribution networks using multiple inverter based power generation facilities. A fault detection process uses the waveshape (or the rate of change of the current) of the distributed generator output short circuit current to determine if a trip signal is required to disconnect the inverter based power generation facility from the transmission and distribution network. The process operates on DGs such as photovoltaic (PV) based solar farm. The present invention applies to the entire 24-hour period operation of inverter based DGs (e.g., solar farms, wind farms, fuel cell based DGs, etc.).
Abstract:
The invention provides a method and system for operating a solar farm inverter as a Flexible AC Transmission System (FACTS) device—a STATCOM—for voltage control. The solar farm inverter can provide voltage regulation, damping enhancement, stability improvement and other benefits provided by FACTS devices. In one embodiment, the solar farm operating as a STATCOM at night is employed to increase the connectivity of neighbouring wind farms that produce peak power at night due to high winds, but are unable to connect due to voltage regulation issues. The present invention can also operate during the day because there remains inverter capacity after real power export by the solar farm. Additional auxiliary controllers are incorporated in the solar farm inverter to enhance damping and stability, and provide other benefits provided by FACTS devices.
Abstract:
The invention provides systems, methods, and devices relating to the provision of system-wide coordinated voltage regulation support in power transmission and distribution networks using multiple inverter-based based power generation or absorption facilities, which are coupled to the power transmission and distribution networks for minimizing transmission and distribution line losses and for performing Conservation Voltage Reduction. The invention uses a novel control method of inverter-based based Distributed Generators as Static Synchronous Compensator (STATCOM) in a way that provides a dynamic voltage regulation/control with the inverter capacity remaining after real power generation or absorption, thereby decreasing line losses, performing Conservation Voltage Reduction (CVR), reducing load demand, decreasing peak demand, and reducing energy consumption.