CLASS DISCRIMINATIVE FEATURE TRANSFORMATION
    1.
    发明申请
    CLASS DISCRIMINATIVE FEATURE TRANSFORMATION 有权
    类别辨别特征转换

    公开(公告)号:US20150117766A1

    公开(公告)日:2015-04-30

    申请号:US14459242

    申请日:2014-08-13

    CPC classification number: G06N99/005 G06K9/6235 G06K2009/6236

    Abstract: A method for feature transformation of a data set includes: receiving a data set including original feature samples with corresponding class labels; splitting the data set into a direction optimization set and a training set; using the direction optimization set to calculate an optimum transformation vector that maximizes inter-class separability and minimizes intra-class variance of the feature samples with respect to corresponding class labels; using the optimum transformation vector to transform the rest of the original feature samples of the data set to new feature samples with enhanced discriminative characteristics; and training a classifier using the new feature samples, wherein the method is performed by one or more processors.

    Abstract translation: 一种用于数据集的特征变换的方法包括:接收包括具有相应类别标签的原始特征样本的数据集; 将数据集分为方向优化集和训练集; 使用方向优化集来计算最大化类间分离性并使特征样本相对于相应类标签的类内方差最小化的最佳变换向量; 使用最佳变换向量将数据集的其余原始特征样本变换为具有增强的鉴别特征的新特征样本; 并使用新的特征样本训练分类器,其中该方法由一个或多个处理器执行。

    Class discriminative feature transformation
    2.
    发明授权
    Class discriminative feature transformation 有权
    类别辨别特征变换

    公开(公告)号:US09471886B2

    公开(公告)日:2016-10-18

    申请号:US14459242

    申请日:2014-08-13

    CPC classification number: G06N99/005 G06K9/6235 G06K2009/6236

    Abstract: A method for feature transformation of a data set includes: receiving a data set including original feature samples with corresponding class labels; splitting the data set into a direction optimization set and a training set; using the direction optimization set to calculate an optimum transformation vector that maximizes inter-class separability and minimizes intra-class variance of the feature samples with respect to corresponding class labels; using the optimum transformation vector to transform the rest of the original feature samples of the data set to new feature samples with enhanced discriminative characteristics; and training a classifier using the new feature samples, wherein the method is performed by one or more processors.

    Abstract translation: 一种用于数据集的特征变换的方法包括:接收包括具有相应类别标签的原始特征样本的数据集; 将数据集分为方向优化集和训练集; 使用方向优化集来计算最大化类间分离性并使特征样本相对于相应类标签的类内方差最小化的最佳变换向量; 使用最佳变换向量将数据集的其余原始特征样本变换为具有增强的鉴别特征的新特征样本; 并使用新的特征样本训练分类器,其中该方法由一个或多个处理器执行。

Patent Agency Ranking