Abstract:
A system for covert sensing. A broadband light source is split into two portions, a first portion of which illuminates a target, and a second portion of which is frequency shifted, e.g., by an acousto-optic frequency shifter. Light reflected from the target is combined with the frequency shifted light, detected, and demodulated with an in-phase and quadrature demodulator. The outputs of the demodulator are filtered and the arc tangent of the ratio is calculated.
Abstract:
A computer device may receive a codebook, and generate a unitary transformation operator for the codebook. Furthermore, the computer device may decompose the unitary transformation operator into representations of two or more devices, and cause a generating of a layout of a photonic circuit that includes the two or more devices.
Abstract:
An optical receiver may include a unitary transformation operator to receive an n-symbol optical codeword associated with a codebook, and to perform a unitary transformation on the received optical codeword to generate a transformed optical codeword, where the unitary transformation is based on the codebook. The optical receiver may further include n optical detectors, where a particular one of the n optical detectors is to detect a particular optical symbol of the transformed optical codeword, and to determine whether the particular optical symbol corresponds to a first optical symbol or a second optical symbol. The optical receiver may also include a decoder to construct a codeword based on the determinations, and to decode the constructed codeword into a message using the codebook. The optical receiver may attain superadditive capacity, and, with an optimal code, may attain the Holevo limit to reliable communication data rates.
Abstract:
A method implemented by an optical circuit, including beam splitter, phase shifters and cross-phase modulators, for solving Ising-model using quantum annealing discretizes a continuous time-dependent Hamiltonian function over a time period T, into a plurality of smaller portions; implements each of said smaller portions with a non-linear optical medium, and iterates over said smaller portions to output a solution of the Ising Hamiltonian problem, using the optical components.
Abstract:
A method and device for optimal processing of a plurality of sets of coherent states of lights. The method includes: receiving a light having a coherent state; splitting the coherent state into a plurality of identical states (slices), each a coherent state with lower intensity than that of the received coherent state; transferring the information of each of the identical coherent states into a qubit; compressing the quantum information of the qubit into a quantum memory; and quantum processing the quantum information from the quantum memory.
Abstract:
A system for covert sensing. A broadband light source is split into two portions, a first portion of which illuminates a target, and a second portion of which is frequency shifted, e.g., by an acousto-optic frequency shifter. Light reflected from the target is combined with the frequency shifted light, detected, and demodulated with an in-phase and quadrature demodulator. The outputs of the demodulator are filtered and the arc tangent of the ratio is calculated.
Abstract:
An optical receiver may include a unitary transformation operator to receive an n-symbol optical codeword associated with a codebook, and to perform a unitary transformation on the received optical codeword to generate a transformed optical codeword, where the unitary transformation is based on the codebook. The optical receiver may further include n optical detectors, where a particular one of the n optical detectors is to detect a particular optical symbol of the transformed optical codeword, and to determine whether the particular optical symbol corresponds to a first optical symbol or a second optical symbol. The optical receiver may also include a decoder to construct a codeword based on the determinations, and to decode the constructed codeword into a message using the codebook. The optical receiver may attain superadditive capacity, and, with an optimal code, may attain the Holevo limit to reliable communication data rates.
Abstract:
A method and device for optimal processing of a plurality of sets of coherent states of lights. The method includes: receiving a light having a coherent state; splitting the coherent state into a plurality of identical states (slices), each a coherent state with lower intensity than that of the received coherent state; transferring the information of each of the identical coherent states into a qubit; compressing the quantum information of the qubit into a quantum memory; and quantum processing the quantum information from the quantum memory.
Abstract:
A method implemented by an optical circuit, including beam splitter, phase shifters and cross-phase modulators, for solving Ising-model using quantum annealing discretizes a continuous time-dependent Hamiltonian function over a time period T, into a plurality of smaller portions; implements each of said smaller portions with a non-linear optical medium, and iterates over said smaller portions to output a solution of the Ising Hamiltonian problem, using the optical components.