Abstract:
A method for fabricating slow-wave structures, including electromagnetic meta-material structures, for high-power slow-wave vacuum electronic devices operating in millimeter-wavelength (30 GHz-300 GHz) and terahertz-frequency (300 GHz and beyond) bands of electromagnetic spectrum. The method includes: loading a digital three dimensional model of a slow-wave structure in a memory of a 3D printer, the loaded digital three dimensional model having data therein representative of the slow-wave structure to be fabricated by the 3D printer; loading metal powder material into the 3D printer; and operating the 3D printer to melt the metal powder material in accordance with the loaded three dimensional model of the slow-wave structure and then to solidify the melted layer of the metal powder material to fabricate the slow-wave structure layer by layer.
Abstract:
The present disclosure is directed to axial strapping of a multi-core (cascaded) magnetron. The multi-core (cascaded) magnetron includes a cathode and a plurality of cores (anodes) arranged in an axial direction along the cathode. Each of the cores may have a plurality of vanes arranged periodically in an azimuthal direction along a circumference of the cathode and forming by such a way a plurality of resonant cavities. The multi-core (cascaded) magnetron further includes groups of axial straps coupling each of the cores together in the axial direction along the cathode. For example, a first group of axial straps couple the first plurality of vanes of a first core to the second plurality of vanes of a second core. In an embodiment, the axial straps are configured to provide phase synchronization of electromagnetic oscillations induced inside each of the plurality of cores.
Abstract:
A method for fabricating slow-wave structures, including electromagnetic meta-material structures, for high-power slow-wave vacuum electronic devices operating in millimeter-wavelength (30 GHz-300 GHz) and terahertz-frequency (300 GHz and beyond) bands of electromagnetic spectrum. The method includes: loading a digital three dimensional model of a slow-wave structure in a memory of a 3D printer, the loaded digital three dimensional model having data therein representative of the slow-wave structure to be fabricated by the 3D printer; loading metal powder material into the 3D printer; and operating the 3D printer to melt the metal powder material in accordance with the loaded three dimensional model of the slow-wave structure and then to solidify the melted layer of the metal powder material to fabricate the slow-wave structure layer by layer.
Abstract:
The present disclosure is directed to axial strapping of a multi-core (cascaded) magnetron. The multi-core (cascaded) magnetron includes a cathode and a plurality of cores (anodes) arranged in an axial direction along the cathode. Each of the cores may have a plurality of vanes arranged periodically in an azimuthal direction along a circumference of the cathode and forming by such a way a plurality of resonant cavities. The multi-core (cascaded) magnetron further includes groups of axial straps coupling each of the cores together in the axial direction along the cathode. For example, a first group of axial straps couple the first plurality of vanes of a first core to the second plurality of vanes of a second core. In an embodiment, the axial straps are configured to provide phase synchronization of electromagnetic oscillations induced inside each of the plurality of cores.