Abstract:
An image correction method arranged for processing an original image to obtain a corrected image includes steps: receiving the original image from an image sensor; regarding each pixel of the original image, calculating a horizontal distance and a vertical distance between the pixel and a reference point in the original image; determining a horizontal ratio parameter and a vertical ratio parameter according to the horizontal distance and the vertical distance between the pixel and the reference point in the original image; and performing an approximately non-linear regression calculation on the horizontal ratio parameter, the vertical ratio parameter and a coordinate of the pixel to obtain a position of the pixel in the corrected image.
Abstract:
An image de-noising method and an apparatus thereof are disclosed, which includes categorizing a pixel in a current frame into a first low-frequency pixel having a first weight and a first high-frequency pixel having a second weight; categorizing a previous pixel corresponding to the position of the pixel in a previous frame into a second low-frequency pixel having a third weight and a second high-frequency pixel having a fourth weight; adjusting the first weight and the third weight and calculating the weighted sum of the first low-frequency pixel and the second low-frequency pixel, to generate low-frequency pixel data; adjusting the second weight and the fourth weight and calculating the weighted sum of the first high-frequency pixel and the second high-frequency pixel, to generate high-frequency pixel data; and calculating the sum of the low-frequency pixel data and the high-frequency pixel data, to output the de-noised pixel.
Abstract:
An image contrast enhancement method and an apparatus thereof are disclosed, which calculate the degree of influencing the clarity according to the influence feature (e.g., heavy fog, dust, smoke, or etc.) in the image, and then adjust the brightness of the pixels corresponding to features of influencing the clarity according to the degree, thereby enhancing image contrast and removing phenomenon of influencing the clarity in the image.
Abstract:
An image correction method arranged for processing an original image to obtain a corrected image includes steps: receiving the original image from an image sensor; regarding each pixel of the original image, calculating a horizontal distance and a vertical distance between the pixel and a reference point in the original image; determining a horizontal ratio parameter and a vertical ratio parameter according to the horizontal distance and the vertical distance between the pixel and the reference point in the original image; and performing an approximately non-linear regression calculation on the horizontal ratio parameter, the vertical ratio parameter and a coordinate of the pixel to obtain a position of the pixel in the corrected image.
Abstract:
Provided is a fast divider including an initial parameter setting unit and an arithmetic unit. The arithmetic unit is coupled to the initial parameter setting unit that receives a divisor and a dividend, and sets a plurality of initial parameters of a sequence according to the divisor and the dividend. The plurality of initial parameters includes an initial term, a first term and a common ratio having an absolute value smaller than 1. The arithmetic unit stores a recurrence relation of the sequence and iteratively computes a quotient using the recurrence relation according to the plurality of initial parameters. The recurrence relation indicates that a (k+1)th term is equal to a product of a kth term multiplied by a sum of the common ratio and 1 subtracted by a product of a (k−1)th term multiplied by the common ratio. k is an integer larger than or equal to 1.
Abstract:
A method for wide dynamic range imaging is illustrated. A region mapping operation having steps as follows is applied to an image using a plurality of region mapping curves for compensating different luminance associated with a plurality of regions in the image. A low frequency image is obtained. A reference value for each region in the image is obtained according to the low frequency image. One region mapping curve is selected according to the reference value of the region. A gain curve is obtained according to the selected region mapping curve, a gain value of a pixel value or a luminance value of the region is obtained according to the gain curve, an adjusted gain value is obtained according to the luminance corresponding to the pixel value, and the pixel value is adjusted according to the luminance value, the gain value, and the adjusted gain value.
Abstract:
An image contrast enhancement method and an apparatus thereof are disclosed, which calculate the degree of influencing the clarity according to the influence feature (e.g., heavy fog, dust, smoke, or etc.) in the image, and then adjust the brightness of the pixels corresponding to features of influencing the clarity according to the degree, thereby enhancing image contrast and removing phenomenon of influencing the clarity in the image.
Abstract:
A decryption engine includes an update circuit, a key generator, a decryption circuit and a detection circuit. The update circuit generates a first updating information based on a premise of that a currently received frame is encrypted, and generates a second updating information based on a premise of that the currently received frame is non-encrypted. The key generator produces a first key according to the first updating information, and produces a second key according to the second updating information. The decryption circuit generates a first decrypted frame according to the first key and the currently received frame, and generates a second decrypted frame according to the second key and the currently received frame. The detection circuit detects whether the currently received frame is decrypted according to the first decrypted frame and the second decrypted frame, to generate an encryption detection result.