Abstract:
A signal processing device includes a first frame buffer configured to store a first frame, a second frame buffer configured to store a second frame and a processor. The processor is coupled to the first frame buffer and the second frame buffer and is configured to perform a first image processing procedure according to the first frame and the second frame to obtain a super resolution difference value corresponding to each pixel of the first frame, perform a second image processing procedure according to the first frame and the second frame to obtain a noise reduction value corresponding to each pixel of the first frame, selectively add the super resolution difference value and the noise reduction value to the corresponding pixel of the first frame to generate an output frame and store the output frame in the second frame buffer as the second frame.
Abstract:
A method for determining and suppressing Moiré pattern, and a circuit system thereof are provided. In the method, a brightness value of pixels of an image can be obtained. For each of the pixels of the image, a detection window is provided for calculating a Moiré pattern response value of a plurality of critical pixels and corresponding adjacent pixels. The critical pixels within the detection window are selected for determining a type of Moiré pattern. After, it is to compare the brightness values of the critical pixels and the corresponding adjacent pixels within the detection window. The comparison results can be used to determine the brightness characteristics of the pixels through a statistical method. Moiré pattern response value and the statistics are used to determine type and position of the Moiré pattern. A color noise suppression process is performed on the pixels to be determined as Moiré pattern.
Abstract:
An image adjustment method includes: receiving an image, and retrieving R, G and B values and an infrared ray (IR) value from the image; dividing the image into a plurality of blocks; generating initial compensation coefficients respectively corresponding to the R, G, B and IR values for each block within the blocks; and performing following operations upon each block within the blocks: adjusting initial compensation coefficients of a current block according to a plurality of adjacent blocks next to the current block, in order to generate adjusted compensation coefficients of the current block; and using the adjusted compensation coefficients of the current block to perform IR crosstalk compensation upon the current block.
Abstract:
An image processing method and an electronic device thereof are provided. The image processing method includes performing a color processing procedure on the target pixel and correspondingly obtaining a plurality of first processed pixels. The color processing procedure includes: determining, according to the color saturation value of the target pixel and a color partitioning parameter, that the target pixel is located in a low color saturation region, a medium color saturation region, or a high color saturation region; performing suppression processing on the target pixel located in the low color saturation region, to suppress the color saturation value of the target pixel into a grayscale value; performing progressive suppression processing on the target pixel located in the medium color saturation region, to suppress the color saturation value of the target pixel according to a suppression ratio; and maintaining the original color saturation value of the target pixel located in the high color saturation region.
Abstract:
The present disclosure provides an electronic apparatus and an image processing method for image edge enhancement, which adjust each edge pixel located in an image edge of an input image. More specifically, the electronic apparatus and the image processing method adaptively adjust a present pixel that is taken as the edge pixel according to the position of the present pixel in the image edge and the input image, thereby outputting an adjusted pixel value. Accordingly, the electronic apparatus and the image processing method can enhance the image edge according to the actual image condition.
Abstract:
A false color reduction system and method for color interpolation is disclosed in the present invention. The false color reduction system includes a red/blue color interpolation signal reference level estimator, a red/blue color interpolation signal noise analyzer and a red/blue color interpolation signal noise regulator. The red/blue color interpolation signal reference level estimator receives a RGB image array and a red/blue color interpolation signal of the RGB image array to generate a green difference signal. The red/blue color interpolation signal reference level estimator generates a red/blue reference level according to the green difference signal and an average signal. The red/blue color interpolation signal noise analyzer analyzes received signals to generate analysis result. The red/blue color interpolation signal noise regulator receives the analysis result to correct the red/blue color interpolation signal.
Abstract:
The present invention provides an image adjustment method and associated image processing circuit for performing the following operations upon each pixel of an image: obtaining R, G, B values and infrared ray (IR) value corresponding to the current pixel; generating multiple initial compensation parameters corresponding to the R, G, B values; generating an over-compensation parameter according to the R, G, B and IR values; comparing the over-compensation parameter with at least one threshold value to generate a compensation adjustment coefficient; and performing IR crosstalk compensation upon the image with the compensation adjustment coefficient.
Abstract:
An image processing method and an electronic apparatus for foreground image extraction include steps: (A) acquiring frame images of a dynamic image, wherein each frame image has an RGB image and an IR image; (B) acquiring an RGB image representing a dark state as an RGB capture image, acquiring an IR image representing a light state as an IR light frame image, and acquiring one IR image representing the dark state as an IR dark frame image; (C) calculating a difference image between the IR light frame image and the IR dark frame image and binarizing the difference image to generate a binarized image; and (D) acquiring a plurality of foreground pixels corresponding to an IR foreground part of the binarized image of the RGB capture image and taking the foreground pixels as the foreground image, thereby reducing the impact of ambient light, background noise and calculation.
Abstract:
An image processing method for processing an input image is provided. The image processing method includes the following steps: selecting a pixel of the input image; determining if the pixel is a first image edge according to at least one first calibrated pixel and at least one second pixel in the input image, in which the first calibrated pixel corresponds to at least one first pixel in the input image; and replacing a high frequency component of at least one channel of the pixel with a first calibrating high frequency component to generate a calibrated pixel if the pixel is not the first image edge, and maintaining the pixel as the calibrated pixel if the pixel is the first image edge.
Abstract:
An image signal processing method includes: receiving an original color filter array (CFA) image and a pixel binned CFA image; computing a specific information of the pixel binned CFA image; and processing the original CFA image according to the specific information. The associated image signal processor includes an input terminal, an operating unit and a processing unit, wherein the input terminal is for receiving an original CFA image and a pixel binned CFA image, the operating unit is for computing a specific information of the pixel binned CFA image, and the processing unit is for processing the original CFA image according to the specific information and utilizing the pixel binned CFA image.