Abstract:
The present disclosure is generally directed to an embolic material which, in some embodiments, may be in the form of a microsphere or a plurality of microspheres. The embolic material generally comprises carboxymethyl chitosan (CCN) crosslinked with carboxymethyl cellulose (CMC). In some embodiments, the embolic material may further comprise a therapeutic agent, such as doxorubicin.
Abstract:
A vascular graft includes deformable sleeves that include an electrical component. The electrical component can be variable-resistance or piezoelectric, in embodiments, such that deformation of the sleeves due to pressure changes create or modify an electrical signal. A transponder can then transmit information relating to the pressure inside and outside of the vascular graft.
Abstract:
A multi-lumen catheter defining a longitudinal axis includes an inflation lumen, a plug lumen, and a microcatheter lumen, each defined by the catheter and extending substantially parallel to the longitudinal axis. The inflation lumen defines an inlet aperture and an outlet aperture and is configured to provide a fluidic connection from the inlet aperture of the inflation lumen to a balloon. The plug lumen defines an inlet aperture and an outlet aperture and is configured to deliver a plug. The microcatheter lumen defines an inlet aperture and an outlet aperture and is configured to house a microcatheter.
Abstract:
Techniques are disclosed for extended-reality (XR) visualization of a flexible medical tool. In one example, sensor(s), disposed near a distal portion of a flexible shaft of a medical tool configured for insertion into a patient, sense values indicative of a pose of the medical tool with respect to an EM field. A computing device adjusts, based on the sensed values, a relative alignment between the medical tool, an internal anatomy of the patient, and an exterior of the body of the patient. The computing device generates, based on the computed relative alignment between the medical tool, the internal anatomy, and the exterior of the body, XR content comprising a visual representation of the medical tool within the patients internal anatomy, and outputs the XR content for display to a user so as to simulate a current pose of the medical tool relative to the body of the patient.
Abstract:
The present disclosure is generally directed to an embolic material which, in some embodiments, may be in the form of a microsphere or a plurality of microspheres. The embolic material generally comprises carboxymethyl chitosan (CCN) crosslinked with carboxymethyl cellulose (CMC). In some embodiments, the embolic material may further comprise a therapeutic agent, such as doxorubicin.
Abstract:
The present disclosure is generally directed to an embolic material which, in some examples, may be in the form of a microsphere or a plurality of microspheres. The embolic material may include carboxymethyl chitosan (CCN) crosslinked with partially oxidized carboxymethyl cellulose (OCMC) and an imaging agent such as at least one of an ethiodized oil, a radiopaque metal, or super paramagnetic iron oxide nanoparticles integrally contained within the microsphere.
Abstract:
A biomaterial includes keratin proteins crosslinked with linking groups chosen from thiosuccinimide, thioether sulfone, and mixtures and combinations thereof.
Abstract:
The present disclosure describes a plurality of microspheres that include carboxymethyl chitosan (CCN) crosslinked with carboxymethyl cellulose (CMC). The microspheres are biocompatible, bioresorbable, and biodegradable. The microspheres may be used in personal care products, such as, for example, toothpaste, topical pain relief products, topical antibiotic products, skincare products such as anti-wrinkle products, eczema products, skin scrubs, acne cleansers, exfoliators, body washes, soaps, pre-shave creams, or the like.
Abstract:
A liquid embolic material may include a mixture of a first solution comprising between about 1.2% and about 2.5% weight per volume (w/v) carboxymethyl chitosan (CCN) in a first solvent and a second solution comprising between about 1.2% and about 2.5% w/v oxidized carboxymethyl cellulose (OCMC) in a second solvent. The liquid embolic material may be used to embolize a targeted embolization location by mixing the first solution and the second solution to form a liquid embolic material (or hydrogel precursor material), introducing the hydrogel precursor material to a targeted embolization location within a body of a patient, and allowing the CCN and the OCMC to react to form the hydrogel material and embolize the targeted embolization location.
Abstract:
The present disclosure is generally directed to an embolic material which, in some embodiments, may be in the form of a microsphere or a plurality of microspheres. The embolic material generally comprises carboxymethyl chitosan (CCN) crosslinked with carboxymethyl cellulose (CMC). In some embodiments, the embolic material may further comprise a therapeutic agent, such as doxorubicin.