Abstract:
A method for manufacturing a semiconductor device, includes: (a) preparing a lead frame that includes a die pad having a first plane and a second plane located on the opposite side of the first plane, and a plurality of leads arranged next to the die pad; (b) mounting a semiconductor chip having a surface, a plurality of electrodes formed over the surface, and a reverse side located on the opposite side of the surface over a chip mounting area of the first plane of the die pad; (c) electrically coupling parts of the electrodes of the semiconductor chip and the leads through a plurality of first wires and electrically coupling the other parts of the electrodes and the die pad through a second wire.
Abstract:
A method according to the invention has a bonding process of mounting a semiconductor chip on an upper surface of a die pad that has the upper surface whose area is larger than a reverse side of the semiconductor chip. It also has a sealed body formation process of sealing the semiconductor chip so that an undersurface opposite to the upper surface of the die pad may be exposed after the bonding process. Here, the upper surface of the die pad is arranged around an area over which the semiconductor chip is mounted, and has a hollow part arrangement area in which a groove or multiple holes are formed. Moreover, surface roughness of the upper surface is made coarser than surface roughness of the undersurface.
Abstract:
A method for manufacturing a semiconductor device, includes: (a) preparing a lead frame that includes a die pad having a first plane and a second plane located on the opposite side of the first plane, and a plurality of leads arranged next to the die pad; (b) mounting a semiconductor chip having a surface, a plurality of electrodes formed over the surface, and a reverse side located on the opposite side of the surface over a chip mounting area of the first plane of the die pad; (c) electrically coupling parts of the electrodes of the semiconductor chip and the leads through a plurality of first wires and electrically coupling the other parts of the electrodes and the die pad through a second wire.
Abstract:
A semiconductor device has a chip mounting part, a first semiconductor chip, and a second semiconductor chip. The first semiconductor chip is mounted over the chip mounting part in a direction in which its first principal plane faces the chip mounting part. A part of the second semiconductor chip is mounted over the chip mounting part in a direction in which its third principal plane faces the first semiconductor chip. The element mounting part has a notch part. A part of the second semiconductor chip overlaps the notch part. In a region of the third principal plane of the second semiconductor chip that overlaps the notch part, a second electrode pad is provided.
Abstract:
A method of manufacturing a semiconductor device includes mounting at least one of a first semiconductor chip and a second semiconductor chip over a die pad of a leadframe, and inspecting a mounting position of at least one of the first semiconductor chip and the second semiconductor chip, wherein the leadframe includes first mark formed to the die pad, for indicating a first mounting region for the first semiconductor chip, and second mark formed to the die pad, for indicating a second mounting region for the second semiconductor chip, the first mark is different from the second mark, in at least either one of size and geometry, wherein, in the inspecting a mounting position of at least one of the first semiconductor chip and the second semiconductor chip, a mounting position of the first semiconductor chip is inspected when the first semiconductor chip is mounted.
Abstract:
A method of manufacturing a semiconductor device includes mounting at least one of a first semiconductor chip and a second semiconductor chip over a die pad of a leadframe, and inspecting a mounting position of at least one of the first semiconductor chip and the second semiconductor chip, wherein the leadframe includes first mark formed to the die pad, for indicating a first mounting region for the first semiconductor chip, and second mark formed to the die pad, for indicating a second mounting region for the second semiconductor chip, the first mark is different from the second mark, in at least either one of size and geometry, wherein, in the inspecting a mounting position of at least one of the first semiconductor chip and the second semiconductor chip, a mounting position of the first semiconductor chip is inspected when the first semiconductor chip is mounted.
Abstract:
A semiconductor device includes a die pad including a first surface and a second surface opposite to the first surface, a first chip arranged in a first area on the first surface, the first chip including a first side and a second side crossing to the first side, a second chip arranged in a second area on the first surface, the second chip including a third side and a fourth side crossing to the third side, a plurality of first marks formed on the first surface, the first marks including a third mark and a fourth mark, a plurality of second marks formed on the first surface, the second marks including a fifth mark and sixth mark. The semiconductor device also includes a wire and a resin encapsulating the first chip, the second chip, and the wire.
Abstract:
A semiconductor device, includes a die pad that has a first main surface and a second main surface located on the opposite side of the first main surface; a lead arranged next to the die pad; a semiconductor chip that has a surface, a first electrode and a second electrode formed on the surface, and a reverse side located on the opposite side of the surface, and is mounted on a chip mounting area of the first main of the die pad; a first wire that electrically couples the first electrode of the semiconductor chip and the lead; a second wire that electrically couples the second electrode of the semiconductor chip and the die pad; and a sealed body that seals the semiconductor chip, the first wire, and the second wire.
Abstract:
A method according to the invention has a bonding process of mounting a semiconductor chip on an upper surface of a die pad that has the upper surface whose area is larger than a reverse side of the semiconductor chip. It also has a sealed body formation process of sealing the semiconductor chip so that an undersurface opposite to the upper surface of the die pad may be exposed after the bonding process. Here, the upper surface of the die pad is arranged around an area over which the semiconductor chip is mounted, and has a hollow part arrangement area in which a groove or multiple holes are formed. Moreover, surface roughness of the upper surface is made coarser than surface roughness of the undersurface.
Abstract:
A semiconductor device includes a die pad including a first surface and a second surface opposite to the first surface, a first chip arranged in a first area on the first surface, the first chip including a first side and a second side crossing to the first side, a second chip arranged in a second area on the first surface, the second chip including a third side and a fourth side crossing to the third side, a plurality of first marks formed on the first surface, the first marks including a third mark and a fourth mark, a plurality of second marks formed on the first surface, the second marks including a fifth mark and sixth mark. The semiconductor device also includes a wire and a resin encapsulating the first chip, the second chip, and the wire.