Abstract:
A method to detect vibrations associated with biomolecules in tissues and cellsuses Resonance Raman (RR) spectroscopy to measure specific biomolecules in tissue and cells signals. The changes of RR lines of key molecules present to the chemical conformations and change due to disease such as cancer and heart disease. Biomolecules are collagen, flavins, tryptophan, NADH, NAD, etc. The laser beams excite RR of vibration associated with absorption of the key native molecules in tissue (Tryptophan, NADH, Flavins, Collagen, carotenoids, porphyrins and others. The margin assessment and RR images in 2D and 3D regions are found by RR signals using position scanners. The intensity and the numbers of molecule fingerprints indicate the prescence of and the degree of the changes of chemical conformations.
Abstract:
Vulnerable plaque (VP) is the main cause of death from heart attacks. All currently available methods developed to diagnose VP lack sensitivity and or specificity and are still unable to identify VP. Our patent addresses the problem to diagnose VP in arteries. The teachings here disclose a vulnerable plaque optical analyzer (VPOA) and Imager (VOPAI) for monitoring arterial walls by measuring whether the fingerprint Raman spectrum of adipose (lipid) tissue using Resonance Raman (RR) and common Raman(R) signals of aortic intimal wall layer. The RR and R lines of lipid determine presentation of VP.
Abstract:
A method to detect vibrations associated with biomolecules in tissues and cellsuses Resonance Raman (RR) spectroscopy to measure specific biomolecules in tissue and cells signals. The changes of RR lines of key molecules present to the chemical conformations and change due to disease such as cancer and heart disease. Biomolecules are collagen, flavins, tryptophan, NADH, NAD, etc. The laser beams excite RR of vibration associated with absorption of the key native molecules in tissue (Tryptophan, NADH, Flavins, Collagen, carotenoids, porphyrins and others. The margin assessment and RR images in 2D and 3D regions are found by RR signals using position scanners. The intensity and the numbers of molecule fingerprints indicate the presence of and the degree of the changes of chemical conformations.